answersLogoWhite

0


Best Answer

Points: (7, 5)

Equation: 3x+4y-16 = 0

Perpendicular equation: 4x-3y-13 = 0

Equations intersect at: (4, 1)

Length of perpendicular line: 5

User Avatar

Wiki User

โˆ™ 2013-05-30 11:27:48
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.74
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1027 Reviews

Add your answer:

Earn +20 pts
Q: What is the perpendicular distance from the coordinates of 7 and 5 to the straight line of 3x plus 4y -16 equals 0 showing key stages of work?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the perpendicular distance from the point 2 and 4 to the straight line equation of y equals 2x plus 10 showing key stages of work?

1 Coordinates: (2, 4) 2 Equation: y = 2x+10 3 Perpendicular equation: y = -0.5+5 4 They intersect at: (-2, 6) 5 Distance is the square root of: (-2, -2)2+(6, -4) = 2*sq rt of 5 = 4.472 to 3 decimal places


What is the perpendicular distance from the point 19 29 that meets the straight line equation 3y equals 9x plus 18 on the Cartesian plane showing work and answer to an appropriate degree of accuracy?

If: 3y = 9x+18 then y = 3x+6 with a slope of 3 Perpendicular slope: -1/3 Perpendicular equation: y-29 = -1/3(x-19) => 3y = -x+106 Both equations intercept at: (8.8, 32.4) Perpendicular distance: square root of (8.8-19)^2+(32.4-29)^2 = 10.75 rounded


What is the perpendicular distance from the point of 7 and 5 that meets the straight line equation of 3x plus 4y equals 0 on the Cartesian plane showing work?

Equation: 3x+4y = 0 => y = -3/4x Perpendicular slope: 4/3 Perpendicular equation: 4x-3y-13 = 0 Equations intersect at: (2.08, -1.56) Distance from (7, 5) to (2.08, -1.56) = 8.2 units using the distance formula


What is the perpendicular distance from the point 4 -2 to the line 2x -y -5 equals 0 showing key stages of work?

Points: (4, -2) Equation: 2x-y-5 = 0 Perpendicular equation: x+2y = 0 Equations intersect at: (2, -1) Perpendicular distance is the square root of: (2-4)2+(-1--2)2 = 5 Distance = square root of 5


What is the perpendicular distance from the point of 2 4 on the Cartesian plane to the straight line equation of y equals 2x plus 10 showing key stages of work?

1 Equation: y = 2x+10 2 Perpendicular equation works out as: 2y = -x+10 3 Point of intersection: (-2, 6) 4 Distance is the square root of: (-2-2)2+(6-4)2 = 2 times sq rt of 5


What is the distance from the point 5 7 that is perpendicular to to the straight line equation of 3x-y plus 2 equals 0 on the Cartesian plane showing key aspects of work?

To find the perpendicular distance from a given point to a given line, find the equation of the line perpendicular to the given line which passes through the given point. Then the distance can be calculated as the distance from the given point to the point of intersection of the two lines, which can be calculated by using Pythagoras on the Cartesian coordinates of the two points. A line in the form y = mx + c has gradient m. If a line has gradient m, the line perpendicular to it has gradient m' such that mm' = -1, ie m' = -1/m (the negative reciprocal of the gradient). A line through a point (x0, y0) with gradient m has equation: y - yo = m(x - x0) Thus the equation of the line through (5, 7) that is perpendicular to 3x - y + 2 = 0 can be found. The intercept of this line with 3x - y + 2 = 0 can be calculated as there are now two simultaneous equations. → The perpendicular distance from (5, 7) to the line 3x - y + 2 = 0 is the distance form (5, 7) to this point of interception, calculated via Pythagoras: distance = √((change_in_x)^2 + (change_in_y)^2) This works out to be √10 ≈ 3.162


What is the perpendicular distance from the point 7 5 to the staight line equation 3x plus 4y -16 equals 0 showing key stages of work?

Equation: 3x+4y-16 = 0 Perpendicular equation: 4x-3y-13 = 0 Both equations intersect at: (4, 1) Perpendicular distance: square root of (7-4)2+(5-1)2 = 5


What is the perpendicular equation in its general form that meets the line whose coordinates are 2 5 and 11 17 at its midpoint on the Cartesian plane showing all work?

Points: (2, 5) and (11, 17) Midpoint: (6.5, 11) Slope: 4/3 Perpendicular slope: -3/4 Perpendicular equation: y-11 = -3/4(x-6.5) => 4y = -3x+63.5 In its general form: 3x+4y-63.5 = 0


What is the perpendicular distance from the point 7 5 that meets the line of 4 1 and 0 4 at right angles on the Cartesian plane showing key aspects of work?

Points: (4, 1) and (0, 4) Slope: -3/4 Equation: 4y = -3x+16 Perpendicular slope: 4/3 Perpendicular equation: 3y = 4x-13 Both equations meet at: (4, 1) from (7, 5) at right angles Perpendicular distance: square root of [(4-7)squared+(1-5)squared)] = 5 units


What is the perpendicular distance from the point of 2 4 to the equation y equals 2x plus 10 on the Cartesian plane showing work?

Equation: y = 2x+10 Point: (2, 4) Perpendicular slope: -1/2 Perpendicular equation: y-4 = -1/2(x-2) => 2y = -x+10 Both equations intersect at: (-2, 6) Using distance formula: (2, 4) to (-2, 6) = 2 times square root of 5


What a straight angle?

A straight angle is 180o better known as a straight line. The hands of a clock showing a quarter past nine forms a straight angle.


What is rhe perpendicular distance from the point 4 8 to the line of y equals 2x plus 10 on the Cartesian plane showing key aspects of work with an answer to an appropriate degree of accuracy?

Equation: y = 2x+10 and slope is 2 Perpendicular slope: -1/2 Perpendicular equation: 2y = -x+20 Both equations intersect at: (0, 10) from (4, 8) Distance: square root of (0-4)^2 plus (10-8)^2 = 4.472 to three decimal places

People also asked