It is 1/5.
Not sure what a mulitple choice qustion is but if it is anything like a multiple choice question, it is 1/5 or 20%. I strongly advise you to get a dictionary, learn to spell or use a spell checker.
You have a 4 percent chance of guessing both answers correctly assuming there is only one correct answer to each question and that you may only answer once per question.
Not sure what a mulitple choice qustion is but if it is anything like a multiple choice question, it is 1/5 or 20%. I strongly advise you to get a dictionary, learn to spell or use a spell checker.
question with options, you will lose of the credit for that question. Just like the similar multiple-choice penalty on most standardized tests, this rule is necessary to prevent random guessing. With five choices, your chance of getting the question wrong is 80% when guessing, and every wrong answer costs you 1/4 of a point. In this case, leave it blank with no penalty. Guessing becomes a much better gamble if you can eliminate even one obviously incorrect response. If you can narrow the choices down to three possibilities by eliminating obvious wrong answers
An answer stem is the part of a multiple-choice question that presents the initial information or prompt to which the answer choices are related. It typically poses a question or incomplete statement that the test-taker must respond to by selecting the correct answer choice.
6 to 1. (That is, 6 incorrect to 1 correct.) This is equaivalent to a probability of 1/7 or a 14% chance of guessing the correct answer.
The answer depends on the number of choices available for each question.
The probability of getting both answers correct is one chance in nine (0.1111+). There are three possible answers for each question, so there is a 1/3 chance of getting the correct answer to one question. To get the correct answer for both questions, the chances are 1/3 x 1/3 or 1/9.
The correct answer to a multiple choice question depends on the question. The correct answer is not a random event!
50%
To find the probability of getting at least 6 correct answers on a 10-question multiple-choice exam where each question has 5 choices (with only one correct answer), we can model this situation using the binomial probability formula. The probability of guessing correctly on each question is ( p = \frac{1}{5} ) and incorrectly is ( q = \frac{4}{5} ). We need to calculate the sum of probabilities for getting exactly 6, 7, 8, 9, and 10 correct answers. Using the binomial formula, the probability ( P(X = k) ) for each ( k ) can be computed, and then summed to find ( P(X \geq 6) ). The resulting probability is approximately 0.0163, or 1.63%.
Multiple Choices is not correct, because both words in the phrase are plural. By the word's nature, multiple is already plural meaning more than one. By adding the letter sonto the word choice, you are then making that word additionally plural.The correct way to say that something has multiple options would be to say Multiple Choice.