(sqrt2, 315)
(-3,-3)
(5, pi) or in other words, (5, 180)
If the polar coordinates of a point P are (r,a) then the rectangular coordinates of P are x = rcos(a) and y = rsin(a).
(-4,0)
(-6,6)
That is because - for example - some calculations are easier in polar coordinates, and some are easier in rectangular coordinates. For example, complex numbers are easier to add and subtract in rectangular coordinates, and easier to multiply and divide in polar coordinates.
The Pol function converts rectangular coordinates to polar coordinates
Some of them but not all. For example, uniqueness. The rectangular coordinates (x, y) represent a different point if either x or y is changed. This is also true for polar coordinate (r, a) but only if r > 0. For r = 0 the coordinates represent the same point, whatever a is. Thus (x, y) has a 1-to-1 mapping onto the plane but the polar coordinates don't.
Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.
True
Polar coordinates are another way to write down a location on a two dimensional plane. The first number in a pair of coordinates is the distance one has to travel. The second number in the pair is the angle from the origin.