It is a function because for every point on the horizontal axis, the parabola identified one and only one point in the vertical direction.
A parabola opens downward when the coefficient of its ( x^2 ) term (denoted as ( a )) is negative. This means that the vertex of the parabola is the highest point on the graph. Conversely, if ( a ) is positive, the parabola opens upward.
The maximum.
maximum point :)
Opens downward.
Yes, a parabola can represent the graph of a function, specifically a quadratic function of the form ( y = ax^2 + bx + c ). However, not all parabolic shapes qualify as a function; for instance, if a parabola opens sideways (like ( x = ay^2 + by + c )), it fails the vertical line test, which states that a function must have only one output for each input. Thus, while upward or downward-opening parabolas are indeed functions, sideways-opening parabolas are not.
If the value of the variable is negative then the parabola opens downwards and when the value of variable is positive the parabola opens upward.
The maximum.
I think it's like this: x2+3x-5 So if the x2 part is a positive then it opens upward but if it's negative it goes downward.
The maximum point.
maximum point :)
maximum point :)
Standard notation for a quadratic function: y= ax2 + bx + c which forms a parabola, a is positive , minimum value (parabola opens upwards on an x-y graph) a is negative, maximum value (parabola opens downward) See related link.
If a is greater than zero then the parabola opens upward.
Opens downward.
Yes, a parabola can represent the graph of a function, specifically a quadratic function of the form ( y = ax^2 + bx + c ). However, not all parabolic shapes qualify as a function; for instance, if a parabola opens sideways (like ( x = ay^2 + by + c )), it fails the vertical line test, which states that a function must have only one output for each input. Thus, while upward or downward-opening parabolas are indeed functions, sideways-opening parabolas are not.
In a quadratic equation of the form ( ax^2 + bx + c = 0 ), the coefficient ( a ) represents the leading coefficient that determines the shape and orientation of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. Additionally, the value of ( a ) affects the width of the parabola; larger absolute values of ( a ) result in a narrower parabola, while smaller absolute values lead to a wider shape.
When you look at the parabola if it opens downwards then the parabola has a maximum value (because it is the highest point on the graph) if it opens upward then the parabola has a minimum value (because it's the lowest possible point on the graph)