When you look at the parabola if it opens downwards then the parabola has a maximum value (because it is the highest point on the graph) if it opens upward then the parabola has a minimum value (because it's the lowest possible point on the graph)
If a is greater than zero then the parabola opens upward.
The maximum point.
It is a square root mapping. This is not a function since it is a one-to-many mapping.
In classic geometry, it opens down when the directrix is above the focus.In analytical (coordinate) geometry, if the equation of the parabola isy = ax^2 + bx + c, it opens down if a < 0.
if the value is negative, it opens downard
If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].
A parabola opens upwards if the quadratic coefficient - the number before the "x2" is positive; downward if it is negative. Note that x2 is the same as 1x2.
when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up
It is a function because for every point on the horizontal axis, the parabola identified one and only one point in the vertical direction.
Is a parabola whose directrix is below its vertex.
The given terms can't be an equation without an equality sign but a negative parabola opens down wards whereas a positive parabola opens up wards.
Vertex
When you look at the parabola if it opens downwards then the parabola has a maximum value (because it is the highest point on the graph) if it opens upward then the parabola has a minimum value (because it's the lowest possible point on the graph)
A parabola opening up has a minimum, while a parabola opening down has a maximum.
Upwards.
The maximum.