If the value of the variable is negative then the parabola opens downwards
and when the value of variable is positive the parabola opens upward.
When you look at the parabola if it opens downwards then the parabola has a maximum value (because it is the highest point on the graph) if it opens upward then the parabola has a minimum value (because it's the lowest possible point on the graph)
If a is greater than zero then the parabola opens upward.
The maximum point.
It is a square root mapping. This is not a function since it is a one-to-many mapping.
In classic geometry, it opens down when the directrix is above the focus.In analytical (coordinate) geometry, if the equation of the parabola isy = ax^2 + bx + c, it opens down if a < 0.
if the value is negative, it opens downard
If the equation of the parabola isy = ax^2 + bx + c, then it opens above when a>0 and opens below when a<0. [If a = 0 then the equation describes a straight line, and not a parabola!].
The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.
The extreme point of a parabola is called the vertex. In a parabola that opens upwards, the vertex represents the lowest point, while in a parabola that opens downwards, it represents the highest point. The vertex is a crucial feature for understanding the shape and direction of the parabola.
In a quadratic equation of the form (y = ax^2 + bx + c), the value of (a) determines the width of the parabola. If (|a|) is greater than 1, the parabola is narrower, indicating that it opens more steeply. Conversely, if (|a|) is less than 1, the parabola is wider, meaning it opens more gently. The sign of (a) also affects the direction of the opening: positive values open upwards, while negative values open downwards.
A parabola opens upwards if the quadratic coefficient - the number before the "x2" is positive; downward if it is negative. Note that x2 is the same as 1x2.
The given equation of the parabola is in the vertex form (y - 8 = a(x + 5)^2 + 2). Here, (a) is the coefficient of the squared term. Since the coefficient of ((x + 5)^2) is positive (as it's implied to be 1), the parabola opens upwards. Therefore, the parabola opens in the direction of positive y-values.
The shape of the graph of the quadratic function ( y = ax^2 ) is a parabola. If the coefficient ( a ) is positive, the parabola opens upwards, while if ( a ) is negative, it opens downwards. The vertex of the parabola is its highest or lowest point, depending on the direction it opens. The axis of symmetry is the vertical line that passes through the vertex, dividing the parabola into two mirror-image halves.
Changing a variable in a quadratic equation affects the shape and position of its graph. For example, altering the coefficient of the quadratic term (the leading coefficient) changes the width and direction of the parabola, while modifying the linear coefficient affects the slope and position of the vertex. Adjusting the constant term shifts the graph vertically. Overall, each variable influences how the parabola opens and its placement on the coordinate plane.
when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up
The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.
It is a function because for every point on the horizontal axis, the parabola identified one and only one point in the vertical direction.