The maximum.
maximum point :)
Vertex
The vertex of a parabola that opens down is called the maximum point. This point represents the highest value of the function described by the parabola, as the graph decreases on either side of the vertex. In a quadratic equation of the form (y = ax^2 + bx + c) where (a < 0), the vertex can be found using the formula (x = -\frac{b}{2a}). The corresponding (y)-value can then be calculated to determine the vertex's coordinates.
The highest point of a parabola is called the "maximum," while the lowest point is referred to as the "minimum." These points occur at the vertex of the parabola. If the parabola opens upwards, it has a minimum point, and if it opens downwards, it has a maximum point.
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
The maximum point.
Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.
maximum point :)
maximum point :)
Vertex
Opening up, the vertex is a minimum.
The highest point of a parabola is called the "maximum," while the lowest point is referred to as the "minimum." These points occur at the vertex of the parabola. If the parabola opens upwards, it has a minimum point, and if it opens downwards, it has a maximum point.
The vertex is not affected by the direction that the parabola is facing. The vertex is the place where the two sides of the parabola meet. It is in the middle divides the shape in half. If you picture yourself looking at a bowl from the side and then imagining it as two dimensional, it would look like a parabola but for all of the filled in parts of the graph and the fact that the sides of the bowl don't continue on forever. The vertex is the bottom of the bowl, where the sides meet. You measure a vertex as you would a point; with a coordinate.
Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p. Now, what do you mean with 1 and 76 units? 1.76 units? If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
A parabola that opens upward is a U-shaped curve where the vertex is the lowest point on the graph. It can be represented by the general equation y = ax^2 + bx + c, where a is a positive number. The axis of symmetry is a vertical line passing through the vertex, and the parabola is symmetric with respect to this line. The focus of the parabola lies on the axis of symmetry and is equidistant from the vertex and the directrix, which is a horizontal line parallel to the x-axis.