answersLogoWhite

0

The maximum.

User Avatar

Wiki User

9y ago

What else can I help you with?

Related Questions

If the parabola opens downward the vertex is called the?

The maximum point.


How does finding the vertex of a parabola help you when graphing a quadratic equation?

Finding the vertex of the parabola is important because it tells you where the bottom (or the top, for a parabola that 'opens' downward), and thus where you can begin graphing.


If the parabola opens upward the vertex is called?

maximum point :)


If the parabola opens upward the vertex is called the?

maximum point :)


What a parabola the extreme point (which is the highest lowest or farthest point left or right) is called the?

The extreme point of a parabola is called the vertex. In a parabola that opens upwards, the vertex represents the lowest point, while in a parabola that opens downwards, it represents the highest point. The vertex is a crucial feature for understanding the shape and direction of the parabola.


Which way does a parabola open when the coefficient of its x2 term a is a negative?

A parabola opens downward when the coefficient of its ( x^2 ) term (denoted as ( a )) is negative. This means that the vertex of the parabola is the highest point on the graph. Conversely, if ( a ) is positive, the parabola opens upward.


What is maximum or minimum of a parabola depending on whether the parabola opens up or down?

Vertex


What is the vertex of a parabola that opens down called?

The vertex of a parabola that opens down is called the maximum point. This point represents the highest value of the function described by the parabola, as the graph decreases on either side of the vertex. In a quadratic equation of the form (y = ax^2 + bx + c) where (a < 0), the vertex can be found using the formula (x = -\frac{b}{2a}). The corresponding (y)-value can then be calculated to determine the vertex's coordinates.


Which equation describes a parabola that opens up or down and whose vertex is at the point (h v)?

The equation that describes a parabola that opens up or down with its vertex at the point (h, v) is given by the vertex form of a quadratic equation: ( y = a(x - h)^2 + v ), where ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upwards, while if ( a < 0 ), it opens downwards.


When a parabola opens upward the y coordinate of the vertex is a what?

Opening up, the vertex is a minimum.


What do you call the highest or the lowest point of a parabola?

The highest point of a parabola is called the "maximum," while the lowest point is referred to as the "minimum." These points occur at the vertex of the parabola. If the parabola opens upwards, it has a minimum point, and if it opens downwards, it has a maximum point.


What equation describes a parabola that opens left or right and whose vertex is at the point h v?

The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.