answersLogoWhite

0


Best Answer

Yes, all polynomial functions are continuous.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Are all polynomial funcions continuous
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Are all polynomial function continuous?

Yes.


A polynomial function is always continuous?

Yes, a polynomial function is always continuous


How different polynomial and non polynomial?

Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.


What are the properties of rational functions?

Such functions are defined as one polynomial divided by another polynomial. Their properties include that they are defined at all points, except when the denominator is zero. Also, such functions are continuous at all points where they are defined; and all their derivatives exist at any point where they are defined.For more details, I suggest you read the Wikipedia article - or some other source - on "Rational function".


Why do a fish breathe slower in cool water?

they are cold blooded. All bodily funcions slow with the lowering of temperatures.


Polynomials and non polynomials how different?

Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.


How different polynomials and non polynomials?

Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.


What is a polynomial of degree 3 that has no real zeros?

If the coefficients of a polynomial of degree three are real it MUST have a real zero. In the following, asymptotic values are assumed as being attained for brevity: If the coeeff of x3 is positive, the value of the polynomial goes from minus infinity to plus infinity as x goes from minus infinity to plus infinity. The reverse is true if the coefficient of x3 is negative. Since all polynomials are continuous functions, the polynomial must cross the x axis at some point. That's your root.


Are polynomial and trinomial the same?

A trinomial is a polynomial. All trinomials are polynomials but the opposite is not true. a trinomial= three unlike terms. a polynomial= "many" unlike terms.


How different the polynomials and non polynomials?

Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.


Are all polynomial an algebraic expression?

Yes


Is this a polynomial or binomial or trinomial 4x2?

It is a polynomial (monomial). It is a polynomial (monomial). It is a polynomial (monomial). It is a polynomial (monomial).