True
The function is not continuous.
No it is not
A second-degree polynomial function is a function of the form: P(x) = ax2 + bx + cWhere a ≠ 0.
A polynomial is always going to be an algebraic expression, but an algebraic expression doesn't always have to be a polynomial. In another polynomial is a subset of algebraic expression.
Yes.
Yes, all polynomial functions are continuous.
Some of the characteristics of such a function are:The function is continuous (it doesn't make sudden jumps)The derivative is continuous (the function doesn't suddenly change its direction)The function is unbounded - as "x" grows larger and larger, f(x) approaches either plus or minus infinity (i.e., it grows without bounds).In the complex numbers, any polynomial has at least one zero.
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
No. It would not be a polynomial function then.
A line representing any polynomial function, power function (including negative powers), trigonometric functions, most continuous probability distribution functions.
A rational function is the quotient of two polynomial functions.
That's the definition of a "rational function". You simply divide a polynomial by another polynomial. The result is called a "rational function".
fundamental difference between a polynomial function and an exponential function?
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
True