If the coefficients of a polynomial of degree three are real it MUST have a real zero.
In the following, asymptotic values are assumed as being attained for brevity:
If the coeeff of x3 is positive, the value of the polynomial goes from minus infinity to plus infinity as x goes from minus infinity to plus infinity. The reverse is true if the coefficient of x3 is negative. Since all polynomials are continuous functions, the polynomial must cross the x axis at some point. That's your root.
Chat with our AI personalities
No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).
Multiply x3 - 2x2 - 13x - 10
The degree of a polynomial refers to the largest exponent in the function for that polynomial. A degree 3 polynomial will have 3 as the largest exponent, but may also have smaller exponents. Both x^3 and x^3-x²+x-1 are degree three polynomials since the largest exponent is 4. The polynomial x^4+x^3 would not be degree three however because even though there is an exponent of 3, there is a higher exponent also present (in this case, 4).
The polynomial P(x)=(x-3)(x-0)(x+3)(x-1) is of the fourth degree.
That means that you divide one polynomial by another polynomial. Basically, if you have polynomials "A" and "B", you look for a polynomial "C" and a remainder "R", such that: B x C + R = A ... such that the remainder has a lower degree than polynomial "B", the polynomial by which you are dividing. For example, if you divide by a polynomial of degree 3, the remainder must be of degree 2 or less.