If the coefficients of a polynomial of degree three are real it MUST have a real zero.
In the following, asymptotic values are assumed as being attained for brevity:
If the coeeff of x3 is positive, the value of the polynomial goes from minus infinity to plus infinity as x goes from minus infinity to plus infinity. The reverse is true if the coefficient of x3 is negative. Since all polynomials are continuous functions, the polynomial must cross the x axis at some point. That's your root.
No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).
Multiply x3 - 2x2 - 13x - 10
The degree of a polynomial refers to the largest exponent in the function for that polynomial. A degree 3 polynomial will have 3 as the largest exponent, but may also have smaller exponents. Both x^3 and x^3-x²+x-1 are degree three polynomials since the largest exponent is 4. The polynomial x^4+x^3 would not be degree three however because even though there is an exponent of 3, there is a higher exponent also present (in this case, 4).
The polynomial P(x)=(x-3)(x-0)(x+3)(x-1) is of the fourth degree.
That means that you divide one polynomial by another polynomial. Basically, if you have polynomials "A" and "B", you look for a polynomial "C" and a remainder "R", such that: B x C + R = A ... such that the remainder has a lower degree than polynomial "B", the polynomial by which you are dividing. For example, if you divide by a polynomial of degree 3, the remainder must be of degree 2 or less.
Yes - but only if the domain is restricted. Normally the domain is the whole of the real numbers and over that domain it must have at least one real zero.
No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).No. A quadratic polynomial is degree 2 (2 is the highest power); a cubic polynomial is degree 3 (3 is the highest power).
Multiply x3 - 2x2 - 13x - 10
Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)
x2 + 15x +36
For example, if you divide a polynomial of degree 2 by a polynomial of degree 1, you'll get a result of degree 1. Similarly, you can divide a polynomial of degree 4 by one of degree 2, a polynomial of degree 6 by one of degree 3, etc.
(x - (-3)) (x - (-5)) (x - 2), or(x + 3) (x + 5) (x - 2)You can multiply the binomials to get a polynomial of degree 3.
Since the question did not specify a rational polynomial, the answer is a polynomial of degree 3.
The polynomial 7x3 + 6x2 - 2 has a degree of 3, making it cubic.
7X^3 Third degree polynomial.
No. A polynomial can have as many degrees as you like.
The degree of a polynomial refers to the largest exponent in the function for that polynomial. A degree 3 polynomial will have 3 as the largest exponent, but may also have smaller exponents. Both x^3 and x^3-x²+x-1 are degree three polynomials since the largest exponent is 4. The polynomial x^4+x^3 would not be degree three however because even though there is an exponent of 3, there is a higher exponent also present (in this case, 4).