Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
coefficient
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
Yes.
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
Zero.
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
the numerical factor in a term of polynomial
coefficient
True. A polynomial of degree zero is defined as a polynomial where the highest degree term has a degree of zero. This means that the polynomial is a constant term, as it does not contain any variables raised to a power greater than zero. Therefore, a polynomial of degree zero is indeed a constant term.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
Yes.
There's no way for me to tell until you show methe polynomial, or at least the term of degree 1 .
Answer thi What is the coefficient of the term of degree 4 in this polynomial?2x5 + 3x4 - x3 + x2 - 12A. 1 B. 2 C. 3 D. 4 s question…
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
Yes.
There is no polynomial below.(Although I'll bet there was one wherever you copied the question from.)