Yes, the leading coefficient of a polynomial function can be a fraction. A polynomial is defined as a sum of terms, each consisting of a coefficient (which can be any real number, including fractions) multiplied by a variable raised to a non-negative integer power. Thus, the leading coefficient, which is the coefficient of the term with the highest degree, can indeed be a fraction.
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
The leading term in a polynomial is the term with the highest degree, which determines the polynomial's end behavior and its classification (e.g., linear, quadratic, cubic). It is typically expressed in the form ( ax^n ), where ( a ) is a non-zero coefficient and ( n ) is a non-negative integer. The leading term is crucial for understanding the polynomial's growth as the input values become very large or very small.
what is the leading coefficient -3x+8
The answer depends on the what the leading coefficient is of!
Yes, the leading coefficient of a polynomial function can be a fraction. A polynomial is defined as a sum of terms, each consisting of a coefficient (which can be any real number, including fractions) multiplied by a variable raised to a non-negative integer power. Thus, the leading coefficient, which is the coefficient of the term with the highest degree, can indeed be a fraction.
Leading coefficient: Negative. Order: Any even integer.
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
There cannot be such a polynomial. If a polynomial has rational coefficients, then any complex roots must come in conjugate pairs. In this case the conjugate for 2-3i is not a root. Consequently, either (a) the function is not a polynomial, or (b) it does not have rational coefficients, or (c) 2 - 3i is not a root (nor any other complex number), or (d) there are other roots that have not been mentioned. In the last case, the polynomial could have any number of additional (unlisted) roots and is therefore indeterminate.
A polynomial function of least degree with rational coefficients and a leading coefficient of 1 that has the zeros -7 and -4 can be constructed using the fact that if ( r ) is a zero, then ( (x - r) ) is a factor. Therefore, the polynomial can be expressed as ( f(x) = (x + 7)(x + 4) ). Expanding this, we get ( f(x) = x^2 + 11x + 28 ). Thus, the polynomial function is ( f(x) = x^2 + 11x + 28 ).
The leading term in a polynomial is the term with the highest degree, which determines the polynomial's end behavior and its classification (e.g., linear, quadratic, cubic). It is typically expressed in the form ( ax^n ), where ( a ) is a non-zero coefficient and ( n ) is a non-negative integer. The leading term is crucial for understanding the polynomial's growth as the input values become very large or very small.
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
TRue
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is : where a≠ 0. (For if a = 0, the equation becomes a linear equation.) The letters a, b, and c are called coefficients: the quadratic coefficient a is the coefficient of x2, the linear coefficient b is the coefficient of x, and c is the constant coefficient, also called the free term or constant term. Quadratic equations are called quadratic because quadratus is Latin for "square"; in the leading term the variable is squared. A quadratic equation with real or complex coefficients has two (not necessarily distinct) solutions, called roots, which may or may not be real, given by the quadratic formula: : where the symbol "±" indicates that both : and are solutions.
N i g g e r s