answersLogoWhite

0


Best Answer

Sometimes. Not always.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does the graph of a system of equations intersect at more than 1 point?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

The graph of a system of equations with the same slope will have no solutions?

That's right. If a system of equations has a solution, then their graphs intersect, and the point where they intersect is the solution, because it's the point that satisfies each equation in the system. Straight-line graphs with the same slope are parallel lines, and they never intersect, which is another way of saying they have no solution.


How the solution of a linear system with two equations is represented by the point where the graphs of the two equation intersect?

The first graph consists of all points whose coordinates satisfy the first equation.The second graph consists of all points whose coordinates satisfy the second equation.The point of intersection lies on both lines so the coordinates of that poin must satisfy both equations.


What is a solution to a system of equations graphically?

Graphically, it is the point of intersection where the lines (in a linear system) intersect. If you have 2 equations and two unknowns, then you have a 2 lines in a plane. The (x,y) coordinates of the point where the 2 lines intersect represent the values which satisfies both equations. If there are 3 equations and 3 unknowns, then you have lines in 3 dimensional space. If all 3 lines intersect at a point then there is a solution to the system. With more than 3 variables, it is difficult to visualize more dimensions, though.


What is the situation when two linear inequalities have no common solution?

To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).


Does a graph of a system of equations intersect more than 1 point?

In some special cases lines can end up intersecting each other at every point, which means the two seperate lines are on top of each other, where you end up having infinite solutions

Related questions

The graph of a system of equations with the same slope will have no solutions?

That's right. If a system of equations has a solution, then their graphs intersect, and the point where they intersect is the solution, because it's the point that satisfies each equation in the system. Straight-line graphs with the same slope are parallel lines, and they never intersect, which is another way of saying they have no solution.


What is the point at which the lines intersect in a system of linear equations?

The coordinates of the point of intersection represents the solution to the linear equations.


How many solutions will a system of equations have if the graphs of the lines intersect?

A system of equations will have one solution if the graphs of the lines intersect. This is because the lines intersect at a single point. Let's say that point is (a, b). The x = a, y = b is the one and only solution for the system.


When solving a system of equations by graphing how is the solution found?

The solution is the coordinates of the point where the graphs of the equations intersect.


Will the graph of a system of parallel lines intersect at exactly 1 point?

Parallel lines don't intersect, no matter how many of them there are.


If there is no solution to a system of equations it means?

extraneous solution. or the lines do not intersect. There is no common point (solution) for the system of equation.


How the solution of a linear system with two equations is represented by the point where the graphs of the two equation intersect?

The first graph consists of all points whose coordinates satisfy the first equation.The second graph consists of all points whose coordinates satisfy the second equation.The point of intersection lies on both lines so the coordinates of that poin must satisfy both equations.


What does a single solution to a system of equations mean?

It represents the point of intersection on a graph.


What is a solution to a system of equations graphically?

Graphically, it is the point of intersection where the lines (in a linear system) intersect. If you have 2 equations and two unknowns, then you have a 2 lines in a plane. The (x,y) coordinates of the point where the 2 lines intersect represent the values which satisfies both equations. If there are 3 equations and 3 unknowns, then you have lines in 3 dimensional space. If all 3 lines intersect at a point then there is a solution to the system. With more than 3 variables, it is difficult to visualize more dimensions, though.


What system of equations has no solution?

A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.


What do you call the graphs that intersect at exactly one point which gives solution of the system?

They are straight line graphs that work out the solutions of 2 equations or simultaneous equations


What is the situation when two linear inequalities have no common solution?

To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).