Why, sixty! (Did you know that they have taxes, in Texas?!)
The calculation is 5! = 5 X 4 X 3 X 2 X 1 = 60.
There are five choices of which letter to use in the first position, four choices for the next position, and so on.
The word mathematics has 11 letters; 2 are m, a, t. The number of distinguishable permutations is 11!/(2!2!2!) = 39916800/8 = 4989600.
The number of permutations of the letters EFFECTIVE is 9 factorial or 362,880. To determine the distinct permutations, you have to compensate for the three E's (divide by 4) and the two F's (divide by 2), giving you 45,360.
360. There are 6 letters, so there are 6! (=720) different permutations of 6 letters. However, since the two 'o's are indistinguishable, it is necessary to divide the total number of permutations by the number of permutations of the letter 'o's - 2! = 2 Thus 6! ÷ 2! = 360
The number of permutations of the letters EFFECTIVE is 9 factorial or 362,880. Since the letter E is repeated twice we need to divide that by 4, to get 90,720. Since the letter F is repeated once we need to divide that by 2, to get 45,360.
There are 8! = 40320 permutations.
2520.
The distinguishable permutations are the total permutations divided by the product of the factorial of the count of each letter. So: 9!/(2!*2!*1*1*1*1*1) = 362880/4 = 90,720
act
three
7 factorial
There are 7 factorial, or 5,040 permutations of the letters of ALGEBRA. However, only 2,520 of them are distinguishable because of the duplicate A's.
120?
The word mathematics has 11 letters; 2 are m, a, t. The number of distinguishable permutations is 11!/(2!2!2!) = 39916800/8 = 4989600.
The solution is count the number of letters in the word and divide by the number of permutations of the repeated letters; 7!/3! = 840.
There are 7 factorial, or 5,040 permutations of the letters of OCTOBER. However, only 2,520 of them are distinguishable because of the duplicate O's.
Take the total number of letters factorial, then divide by the multiple letters factorial (a and e). 7! / (2!*2!) or 1260.
The number of permutations of the letters EFFECTIVE is 9 factorial or 362,880. To determine the distinct permutations, you have to compensate for the three E's (divide by 4) and the two F's (divide by 2), giving you 45,360.