Tangent:In geometry, the tangent line (or simply the tangent) is a curve at a given point and is the straight line that "just touches" the curve at that point. As it passes through the point where the tangent line and the curve meet the tangent line is "going in the same direction" as the curve, and in this sense it is the best straight-line approximation to the curve at that point.Chord:A chord of a curve is a geometric line segment whose endpoints both lie on the outside of the circle.
-2
A tangent refers to the way in which a curve is measured. The amount of deviation from the segment line is measures, then a formula applied to find the tangent.
is it a line that is slanted
Considering an asymptote as a tangent to the curve "at infinity", the asymptote is the straight line itself.
The slope of a curved line at a point is the slope of the tangent to the curve at that point. If you know the equation of the curve and the curve is well behaved, you can find the derivative of the equation of the curve. The value of the derivative, at the point in question, is the slope of the curved line at that point.
A tangent is a line which touches, but does not cross, a curved line.
Tangent:In geometry, the tangent line (or simply the tangent) is a curve at a given point and is the straight line that "just touches" the curve at that point. As it passes through the point where the tangent line and the curve meet the tangent line is "going in the same direction" as the curve, and in this sense it is the best straight-line approximation to the curve at that point.Chord:A chord of a curve is a geometric line segment whose endpoints both lie on the outside of the circle.
By differentiating the answer and plugging in the x value along the curve, you are finding the exact slope of the curve at that point. In effect, this would be the slope of the tangent line, as a tangent line only intersects another at one point. To find the equation of a tangent line to a curve, use the point slope form (y-y1)=m(x-x1), m being the slope. Use the differential to find the slope and use the point on the curve to plug in for (x1, y1).
The answer will depend on the context. If the curve in question is a differentiable function then the gradient of the tangent is given by the derivative of the function. The gradient of the tangent at a given point can be evaluated by substituting the coordinate of the point and the equation of the tangent, though that point, is then given by the point-slope equation.
A line tangent to a curve, at a point, is the closest linear approximation to how the curve is "behaving" near that point. The tangent line is used to estimate values of the curve, near that point.
A tangent is a line that just touches a curve at a single point and its gradient equals the rate of change of the curve at that point.
A tangent line touches a curve or the circumference of a circle at just one point.
55
It is a straight line that touches the curve such that the line is perpendicular to the radius of the curve at the point of contact.
A tangent line.
equation 1: y = x-4 => y2 = x2-8x+16 when both sides are squared equation 2: x2+y2 = 8 Substitute equation 1 into equation 2: x2+x2-8x+16 = 8 => 2x2-8x+8 = 0 If the discriminant of the above quadratic equation is zero then this is proof that the line is tangent to the curve: The discriminant: b2-4ac = (-8)2-4*2*8 = 0 Therefore the discriminant is equal to zero thus proving that the line is tangent to the curve.