When trying to solve an equation and you end up with the exact same number on both sides , like 10=10 then the equation has infinitely many solutions. If you end up with 2 different number on both side of the equation, like 3=5 then the equation has no solution. If there is a variable on one side and a number on the other, then there is one solution, e.g. x=4.
In the equation 10=10 there is no variable such as x or y that we are trying to find the solution for. The equation x=x might be said to have an infinite number of solutions, because you can choose any value you like for x. More often you would say that "x is indeterminate". So if your equation always turns out to be satisfied for any x you choose, then there is an infinity of solutions and the equation does not represent anything useful.
Or, for example, it may have a result such as "true for all even numbers", and you may not be aware in advance that this might happen. Or another example might be sin(x)=0 which has solutions for all values for those x which are integer multiples of 180 degrees. The only way is to solve the equation and see what appears.
Chat with our AI personalities
A single linear equation in two variables has infinitely many solutions. Two linear equations in two variables will usually have a single solution - but it is also possible that they have no solution, or infinitely many solutions.
If the solution contains one variable which has not been fixed then there are infinitely many solution.
Strictly speaking the above equation is a tautological equation or an IDENTITY. An identity is true for all values of any variables that appear in it. Thus, the above "equation" is true for all value of x. - that is, it has infinitely many solutions.
There are infinitely many solutions. One linear equation in two variables cannot be solved to give a single answer.
A quadratic equation has the formAx2 + Bx + C = 0,where A, B, and C are numbers and x is a variable. Since the polynomial here has degree 2 (the highest exponent of x), it either has 0, 1, 2, or infinitely many solutions.The infinitely many solutions only happens when A, B, and C are all equal to zero. Otherwise, we can find the number of solutions by examining the discriminant, which in this case is the quantity B2 - 4AC. If the discriminant is negative, there are no (real) solutions. If the discriminant equals zero, we have what is called a "repeated root" and there is exactly one (real) solution. Otherwise, if the discriminant is positive, there are two distinct (real) solutions.