3360
The number of permutations of the letters in the word SCHOOLS is the number of permutations of 7 things taken 7 at a time, which is 5040. However, since two of the letters, S and O, are duplicated, the number of distinct permutations is one fourth of that, or 1260.
The number of permutations of the letters EFFECTIVE is 9 factorial or 362,880. To determine the distinct permutations, you have to compensate for the three E's (divide by 4) and the two F's (divide by 2), giving you 45,360.
There are 8! = 40320 permutations.
There are 6! = 720 permutations.
2
The number of permutations of the letters in the word LOUISIANA is 9 factorial or 362,880. However, since the letters I and A are each repeated once, you need to divide that by 4 to determine the number of distinct permutations, giving you 90,720.
The number of permutations of the letters SWIMMING is 8 factorial or 40,320. The number of distinct permutations, however, due to the duplication of the letters I and M is a factor of 4 less than that, or 10,080.
The number of permutations of the letters in the word SCHOOLS is the number of permutations of 7 things taken 7 at a time, which is 5040. However, since two of the letters, S and O, are duplicated, the number of distinct permutations is one fourth of that, or 1260.
The number of permutations of the letters EFFECTIVE is 9 factorial or 362,880. To determine the distinct permutations, you have to compensate for the three E's (divide by 4) and the two F's (divide by 2), giving you 45,360.
The word "freezer" has 7 letters, with the letter "e" appearing twice and the letter "r" appearing twice. The number of distinct permutations can be calculated using the formula for permutations of a multiset: ( \frac{n!}{n_1! , n_2! , \ldots , n_k!} ), where ( n ) is the total number of letters and ( n_i ) are the frequencies of the repeated letters. Thus, the number of permutations is ( \frac{7!}{2! \times 2!} = \frac{5040}{4} = 1260 ). Therefore, there are 1,260 distinct permutations of the word "freezer."
The word "noon" consists of 4 letters, where 'n' appears twice and 'o' appears twice. To find the number of distinct permutations, we use the formula for permutations of multiset: ( \frac{n!}{n_1! \cdot n_2!} ), where ( n ) is the total number of letters and ( n_1, n_2 ) are the frequencies of the repeating letters. Thus, the number of permutations is ( \frac{4!}{2! \cdot 2!} = \frac{24}{4} = 6 ). Therefore, there are 6 distinct permutations of the letters in the word "noon."
The word "numbers" consists of 7 distinct letters. The number of permutations of these letters is calculated using the factorial of the number of letters, which is 7!. Therefore, the total number of permutations is 7! = 5,040.
39916800 permutations are possible for the word INFORMATION.
10! permutations of the word "Arithmetic" may be made.
There are 8! = 40320 permutations.
If you mean permutations of the letters in the word "obfuscation", the answer is 1,814,400.
There are 6! = 720 permutations.