answersLogoWhite

0

To calculate the number of ways the letters in the word "pencil" can be rearranged, we first determine the total number of letters, which is 6. Since there are two repeated letters (the letter 'e'), we divide the total number of letters by the factorial of the number of times each repeated letter appears. This gives us 6! / 2! = 360 ways to rearrange the letters in the word "pencil."

User Avatar

ProfBot

4mo ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
More answers

The number of permutations of the letters PENCIL is 6 factorial, or 720.

User Avatar

Wiki User

13y ago
User Avatar

Add your answer:

Earn +20 pts
Q: How many ways can you rearrange the letters in the word pencil?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

How many ways can you rearrange the letters Eric?

4! = 24 ways.


How many different ways can you rearrange the letters of the word 'chocolate'?

Make notes that:There are 2 c's in the given word.There are 2 o's in the given word.Since repetition is restricted when rearranging the letters, we need to divide the total number of ways of rearranging the letters by 2!2!. Since there are 9 letters in the word to rearrange, we have 9!. Therefore, there are 9!/(2!2!) ways to rearrange the letters of the word 'chocolate'.


How many ways to rearrange the letters of the word 'CHEESE'?

CHEESE cheese has 6 letters in it. if you have a word with different letters, you do the factorial of the number of letters there are. but you can not do that in this word. since it has 3 E's, then you mut do 6!(factorial) divided by 3! then the answer would be 120


How many ways are there to rearrange the letters in inaneness?

The number of permutations of the letters of the word depends upon the number of letters in the word and the number of repeated letters. Since there are nine letters, if there were no repetitions, the number of ways to rearrange these letters would be 9! or 9 X 8 X 7 X 6 X 5 X 4 X 3 X 2 X 1. But don't do the multiplication just yet. To account for the repeated letters, we need to divide by 3! (for the 3 Ns) by 2! (for the 2Es) and by another 2! (for the 2 Ss). This gives a final answer of 15,120 permutations of these letters.


How many ways can you rearrange the letters in POSSESSES?

9! (nine factorial)However, since the S is repeated 4 times you need to divide that by 16, and since the E is repeated once, you need to divide that by 2. The final result, which is the number of distinctcombinations of the letters POSSESSES is 11340.