answersLogoWhite

0


Best Answer

Proof By Contradiction:

Claim: R\Q = Set of irrationals is countable.

Then R = Q union (R\Q)

Since Q is countable, and R\Q is countable (by claim), R is countable because the union of countable sets is countable.

But this is a contradiction since R is uncountable (Cantor's Diagonal Argument).

Thus, R\Q is uncountable.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How prove that the set of irrational numbers are uncountable?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Is the set of all irrational number countable?

No, it is uncountable. The set of real numbers is uncountable and the set of rational numbers is countable, since the set of real numbers is simply the union of both, it follows that the set of irrational numbers must also be uncountable. (The union of two countable sets is countable.)


Which one is more irrational or rational?

You can choose an irrational number to be either greater or smaller than any given rational number. On the other hand, if you mean which set is greater: the set of irrational numbers is greater. The set of rational numbers is countable infinite (beth-0); the set of irrational numbers is uncountable infinite (more specifically, beth-1 - there are larger uncountable numbers as well).


How do you prove the set of rational numbers are uncountable?

They are not. They are countably infinite. That is, there is a one-to-one mapping between the set of rational numbers and the set of counting numbers.


What do rational and irrational numbers have in common?

Rational and irrational numbers are part of the set of real numbers. There are an infinite number of rational numbers and an infinite number of irrational numbers. But rational numbers are countable infinite, while irrational are uncountable. You can search for these terms for more information. Basically, countable means that you could arrange them in such a way as to count each and every one (though you'd never count them all since there is an infinite number of them). I guess another similarity is: the set of rational numbers is closed for addition and subtraction; the set of irrational numbers is closed for addition and subtraction.


Are most numbers rational or irrational?

The set of irrational numbers is larger than the set of rational numbers, as proved by Cantor: The set of rational numbers is "countable", meaning there is a one-to-one correspondence between the natural numbers and the rational numbers. You can put them in a sequence, in such a way that every rational number will eventually appear in the sequence. The set of irrational numbers is uncountable, this means that no such sequence is possible. All rational and irrationals (ie real numbers) are a subset of complex numbers. Complex numbers, in turn, are part of a larger group, and so on.


A set of numbers combining rational and irrational numbers?

The Real numbers


Why the set of irrational number is denoted by q'?

The set of irrational numbers is NOT denoted by Q.Q denotes the set of rational numbers. The set of irrational numbers is not denoted by any particular letter but by R - Q where R is the set of real numbers.


Is the set of irrational numbers countably infinite?

No. The set of irrational numbers has the same cardinality as the set of real numbers, and so is uncountable.The set of rational numbers is countably infinite.


Can a number be a member of the set of rational numbers in the set of irrational numbers?

No, a number is either rational or irrational


Is the field irrational numbers complete?

This set cannot be answered since the set of irrational numbers is not a field!


How do you write an irrational number in algebra?

There is no representation for irrational numbers: they are represented as real numbers that are not rational. The set of real numbers is R and set of rational numbers is Q so that the set of irrational numbers is the complement if Q in R.


What is a set of rational and irrational numbers?

It is the set of Real numbers.