Discuss how you can use the zeros of the numerator and the zeros of the denominator of a rational function to determine whether the graph lies below or above the x-axis in a specified interval?
If the first derivative of a function is greater than 0 on an interval, then the function is increasing on that interval. If the first derivative of a function is less than 0 on an interval, then the function is decreasing on that interval. If the second derivative of a function is greater than 0 on an interval, then the function is concave up on that interval. If the second derivative of a function is less than 0 on an interval, then the function is concave down on that interval.
One.
what exponential function is the average rate of change for the interval from x = 7 to x = 8.
Yes. A well-known example is the function defined as: f(x) = * 1, if x is rational * 0, if x is irrational Since this function has infinitely many discontinuities in any interval (it is discontinuous in any point), it doesn't fulfill the conditions for a Riemann-integrable function. Please note that this function IS Lebesgue-integrable. Its Lebesgue-integral over the interval [0, 1], or in fact over any finite interval, is zero.
What is the area bounded by the graph of the function f(x)=1-e^-x over the interval [-1, 2]?
f(x) is decreasing on the interval on which f'(x) is negative. So we want: (x2-2)/x<0 For this to be true either the numerator or the denominator (but not both) must be negative. On the interval x>0, the numerator is negative for 0<x<sqrt(2) and the denominator is positive for all x>0. On the interval x<0, the denominator is negative for all values on this interval. The numerator is positive on this interval for x<-sqrt(2). So, f' is negative (and f is decreasing) on the intervals: (-infinity, -sqrt(2)), (0, sqrt(2))
If the first derivative of a function is greater than 0 on an interval, then the function is increasing on that interval. If the first derivative of a function is less than 0 on an interval, then the function is decreasing on that interval. If the second derivative of a function is greater than 0 on an interval, then the function is concave up on that interval. If the second derivative of a function is less than 0 on an interval, then the function is concave down on that interval.
It is mathematically impossible to use arc length and an interval alone to determine a function!
A function is positive on an interval, say, the interval from x=a to x=b, if algebraically, all the y-coordinate values are positive on this interval; and graphically, the entire curve or line lies above the x-axis.on this interval.
One.
The question was, let f(x) = 2x if x < -2, ...2x - 2 if -2 <= x <= 2, and ...-2 if x < -2; and what is its graph. You might call this a piecewise-defined linear function. The easiest way to determine this is to look at each interval and see: * Is the function a straight line on each whole interval? * Can you pick two points on each interval so that they match the equation? * And is it a function? Do that and you'll be able to tell. E-mail me if you have more questions on this.
Yes.
Yes.
The standard deviation is used in the numerator of the margin of error calculation. As the standard deviation increases, the margin of error increases; therefore the confidence interval width increases. So, the confidence interval gets wider.
2
To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.
It can't - unless you analyze the function restricted to a certain interval.