Discuss how you can use the zeros of the numerator and the zeros of the denominator of a rational function to determine whether the graph lies below or above the x-axis in a specified interval?
If the first derivative of a function is greater than 0 on an interval, then the function is increasing on that interval. If the first derivative of a function is less than 0 on an interval, then the function is decreasing on that interval. If the second derivative of a function is greater than 0 on an interval, then the function is concave up on that interval. If the second derivative of a function is less than 0 on an interval, then the function is concave down on that interval.
One.
what exponential function is the average rate of change for the interval from x = 7 to x = 8.
Yes. A well-known example is the function defined as: f(x) = * 1, if x is rational * 0, if x is irrational Since this function has infinitely many discontinuities in any interval (it is discontinuous in any point), it doesn't fulfill the conditions for a Riemann-integrable function. Please note that this function IS Lebesgue-integrable. Its Lebesgue-integral over the interval [0, 1], or in fact over any finite interval, is zero.
What is the area bounded by the graph of the function f(x)=1-e^-x over the interval [-1, 2]?
f(x) is decreasing on the interval on which f'(x) is negative. So we want: (x2-2)/x<0 For this to be true either the numerator or the denominator (but not both) must be negative. On the interval x>0, the numerator is negative for 0<x<sqrt(2) and the denominator is positive for all x>0. On the interval x<0, the denominator is negative for all values on this interval. The numerator is positive on this interval for x<-sqrt(2). So, f' is negative (and f is decreasing) on the intervals: (-infinity, -sqrt(2)), (0, sqrt(2))
If the first derivative of a function is greater than 0 on an interval, then the function is increasing on that interval. If the first derivative of a function is less than 0 on an interval, then the function is decreasing on that interval. If the second derivative of a function is greater than 0 on an interval, then the function is concave up on that interval. If the second derivative of a function is less than 0 on an interval, then the function is concave down on that interval.
It is mathematically impossible to use arc length and an interval alone to determine a function!
Knowing the zeros of a function helps determine where the function is positive by identifying the points where the function intersects the x-axis. Between these zeros, the function will either be entirely positive or entirely negative. By evaluating the function's value at points between the zeros, one can determine the sign of the function in those intervals, allowing us to establish where the function is positive. This interval analysis is crucial for understanding the function's behavior across its domain.
A function is positive on an interval, say, the interval from x=a to x=b, if algebraically, all the y-coordinate values are positive on this interval; and graphically, the entire curve or line lies above the x-axis.on this interval.
One.
A function that is continuous over a finite closed interval must have both a maximum and a minimum value on that interval, according to the Extreme Value Theorem. This theorem states that if a function is continuous on a closed interval ([a, b]), then it attains its maximum and minimum values at least once within that interval. Therefore, it is impossible for a continuous function on a finite closed interval to not have a maximum or minimum value.
To solve step functions, first identify the intervals defined by the step function. Determine the value of the function within each interval, which is typically constant. For a specific input, find which interval it falls into and use the corresponding constant value. If needed, you can also analyze the function graphically to visualize the jumps and constant sections.
The question was, let f(x) = 2x if x < -2, ...2x - 2 if -2 <= x <= 2, and ...-2 if x < -2; and what is its graph. You might call this a piecewise-defined linear function. The easiest way to determine this is to look at each interval and see: * Is the function a straight line on each whole interval? * Can you pick two points on each interval so that they match the equation? * And is it a function? Do that and you'll be able to tell. E-mail me if you have more questions on this.
Yes.
To determine the highest value on the domain of a function, you first need to identify the function's domain, which consists of all permissible input values (x-values). The highest value would be the maximum point within that domain. If the domain is restricted to a specific interval, the highest value would be the endpoint of that interval, assuming the function is defined and continuous at that point. Always consider the behavior of the function at the boundaries of the domain to ensure you identify the correct maximum.
Yes.