answersLogoWhite

0

What else can I help you with?

Continue Learning about Algebra

If you wanted to shift the graph of y 4x plus 7 down which equation could you use apex?

To shift the graph of y = 4x + 7 down, you would subtract a constant from the equation. In this case, you would subtract 7 from the equation to shift it downward. The new equation would be y = 4x. This would shift the entire graph downward by 7 units along the y-axis.


What is the transformation from the parent function fx equal x to g when gx equal x plus 21?

at first draw the graph of fx, then shift the graph along -ve x-axis 21 unit


When you shift the graph of an equation left or right does every instance of x in the equation changes?

Yes. For example, if you want to shift the graph 5 units to the right, you must replace every instance of "x" by "x-5".


What are the steps for writing the equation of a function from a graph?

1. Decide if the graph looks like any standard type of graph you've seen before. Is it a type of sine or cosine? A quadratic? A circle or ellipse? A line? An exponential? (You get the idea.) If you can't find a standard type to match your desired graph, pick one that looks close to it and recognize that you will be doing an approximation to your function.2. Once you have an idea of what you're graph should be like, think about the equations that are used to describe that graph. Where do the numbers go and how do they affect how the graph looks/moves/ behaves? Some functions, such as circles, hyperbolas, and quadratics, have standard equations with variables based on the important features of the graph (such as the center, maximums or minimums).3. Find the important and/or interesting parts of the graph and use them in the equation. As stated before, ellipses and such have special equations to describe them. Sines and cosines require the amplitude, frequency, and phase shift.4. Check your equation if you can. It's always good to plug a few of the points that are in your graph to make sure your equation is accurate. It's especially good to try out points you did NOT use to find your equation. If it works for these, then you probably did it right.


Is f(x) shifted downward a units?

To shift a funcion (or its graph) down "a" units, you subtract "a" from the function. For example, x squared gives you a certain graph; "x squared minus a" will give you the same graph, but shifted down "a" units. Similarly, you can shift a graph upwards "a" units, by adding "a" to the function.

Related Questions

If you shift the linear parent function f(x) x down 6 units what is the equation of the new function?

To shift the linear parent function ( f(x) = x ) down 6 units, you subtract 6 from the function. The equation of the new function becomes ( f(x) = x - 6 ). This transformation vertically translates the graph downward by 6 units.


If you apply the changes below to the absolute value parent function F(x) x what is the equation of the new function Shift 8 units left. Shift 3 units Dow?

To shift the absolute value parent function ( F(x) = |x| ) eight units to the left, you replace ( x ) with ( x + 8 ), resulting in ( F(x) = |x + 8| ). Then, to shift the function down three units, you subtract 3 from the entire function, yielding the final equation ( F(x) = |x + 8| - 3 ).


What changes can be made to a quadratic function to shift the graph horizontally?

A translation.


If you vertically shift the linear parent function F(x) x down six units what is the equation of the new function?

To vertically shift the linear parent function ( F(x) = x ) down six units, you subtract 6 from the function. The new equation becomes ( F(x) = x - 6 ). This transformation moves the entire graph downward by 6 units while maintaining its linear characteristics.


If you apply the changes below to the linear parent function f(x) x what is the equation of the new function?

To determine the equation of the new function after applying changes to the linear parent function ( f(x) = x ), we need to know the specific transformations applied, such as shifts, stretches, or reflections. For example, if we apply a vertical shift up by 3 units, the new function would be ( f(x) = x + 3 ). If we apply a horizontal shift to the right by 2 units, it would be ( f(x) = x - 2 ). Please provide the specific changes for a precise new equation.


If you vertically shift the linear parent function F(x) x up 2 units then horizontally compress it by multiplying by 7 what is the equation of the new function G(x)?

14


To shift the graph of an equation a certain number of units up you need to that number to from the function's equation?

Add


What can shift a quadratic graph horizontally?

If the equation is a(x-n)2+c, c causes the vertical shift. By setting the part in parenthesis, x-n, equal to 0, you can find the horizontal shift (x-n=0). I hope this helped :)


How does changing the constant affect a graph?

Changing the constant in a function will shift the graph vertically but will not change the shape of the graph. For example, in a linear function, changing the constant term will only move the line up or down. In a quadratic function, changing the constant term will shift the parabola up or down.


How can transformations alter the graph of a parent function?

OK, so let's call the parent function you're given f(x). There's a series of transformations a parent function can go through:-f(x) = makes the parent function reflect over the x-axisOn the other hand, f(-x) = makes it reflect over the y-axisf(x+a) = makes the parent function shift a units to the leftf(x-a) = makes the parent function shift a units to the rightf(x)+a = makes the parent function shift a units upf(x)-a = makes the parent function shift a units downf(ax) if x is a fraction like 1/2 , makes the parent function stretch by a factor of 2 (or multiply each x by 2)f(ax) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function compress by a factor of 2 (or divide each x by 2)a*f(x) if x is a fraction like 1/2, makes the parent function get shorter by a factor of 2 (or divide each y by 2)a*f(x) if x is a whole number (or fractions greater or equal to 1) like 2, makes the parent function get taller by a factor of 2 (or multiply each y by 2)One way you can always tell what to do is that everything that is INSIDE the parentheses will be the OPPOSITE of what you think it should do. OUTSIDE the parentheses will do EXACTLY what you think it should do.And when performing the transformations, start inside the parentheses first and then move outside. For example, f(x-2)+2; move the parent function first to the right 2 units and THEN move it up 2 units.


Write an equation of the cosine function with amplitude two thirds period 1.8 phase shift -5.2 and vertical shift 3.9?

y=2/3cos(1.8b-5.2)+3.9


What are the following functions state the vertex and what transformations on the parent function are needed to make the graph of the given function?

To determine the vertex and transformations of a given function, we first need the specific function itself. For example, if the function is in the form (f(x) = a(x-h)^2 + k), the vertex is ((h, k)). The transformations from the parent function (f(x) = x^2) would include a vertical stretch/compression by factor (a), a horizontal shift (h) units, and a vertical shift (k) units. If you provide the specific function, I can give a more detailed answer.