answersLogoWhite

0

If the base of the exponent were 1, the function would remain constant. The graph would be a horizontal line. If the base of the exponent were less than 1, but greater than 0, the function would be decreasing.

User Avatar

Jozalynn Ezell

Lvl 2
3y ago

What else can I help you with?

Related Questions

Why is the base of 1 not used for an exponential function?

The base of 1 is not used for exponential functions because it does not produce varied growth rates. An exponential function with a base of 1 would result in a constant value (1), regardless of the exponent, failing to demonstrate the characteristic rapid growth or decay associated with true exponential behavior. Therefore, bases greater than 1 (for growth) or between 0 and 1 (for decay) are required to reflect the dynamic nature of exponential functions.


On a graph what shape doesn't exponential function make?

An exponential function does not create a linear shape on a graph. Instead, it produces a curve that either rises or falls rapidly, depending on whether the base of the exponent is greater than or less than one. The graph is characterized by its continuous and smooth nature, exhibiting either exponential growth or decay. Additionally, it does not form any circular or parabolic shapes, which are seen in other types of functions.


How does an exponential function differ from a power function graphically?

An exponential function of the form a^x eventually becomes greater than the similar power function x^a where a is some constant greater than 1.


Can a exponential functions be a negative number?

Exponential functions of the form ( f(x) = a \cdot b^x ), where ( a ) is a constant and ( b ) is a positive base, cannot yield negative values if ( a ) is positive. However, if ( a ) is negative, the function can take on negative values for certain inputs. In general, exponential functions are always positive when ( a ) is positive and ( b ) is greater than zero, but they can be negative if ( a ) is negative.


How can you tell from looking at an elation if the equation represents experiential growth or decay?

To determine if an equation represents exponential growth or decay, look at the base of the exponential function. If the base is greater than 1 (e.g., (y = a \cdot b^x) with (b > 1)), the function represents exponential growth. Conversely, if the base is between 0 and 1 (e.g., (y = a \cdot b^x) with (0 < b < 1)), the function indicates exponential decay. Additionally, the sign of the exponent can also provide insight into the behavior of the function.


What is the logarithmic function and exponential function?

The exponential function is e to the power x, where "x" is the variable, and "e" is approximately 2.718. (Instead of "e", some other number, greater than 1, may also be used - this might still be considered "an" exponential function.) The logarithmic function is the inverse function (the inverse of the exponential function).The exponential function, is the power function. In its simplest form, m^x is 1 (NOT x) multiplied by m x times. That is m^x = m*m*m*...*m where there are x lots of m.m is the base and x is the exponent (or power or index). The laws of indices allow the definition to be extended to negative, rational, irrational and even complex values for both m and x.There is a special value of m, the Euler number, e, which is a transcendental number which is approx 2.71828... [e is to calculus what pi is to geometry]. Although all functions of the form y = m^x are exponential functions, "the" exponential function is y = e^x.Finally, if y = e^x then x = ln(y): so x is the natural logarithm of y to the base e. As with the exponential functions, the logarithmic function function can have any positive base, but e and 10 are the commonly used one. Log(x), without any qualifying feature, is used to represent log to the base 10 while logx where is a suffixed number, is log to the base b.


Find a number less than 534000 and a number greater than 534000 that can be expressed in exponential form?

534,000 to the first exponent


What the difference between an exponential equation and a power equation?

y = ax, where a is some constant, is an exponential function in x y = xa, where a is some constant, is a power function in x If a > 1 then the exponential will be greater than the power for x > a


Why does b have to be greater than 0 in an exponential function?

In an exponential function of the form ( f(x) = b^x ), where ( b ) is the base, ( b ) must be greater than 0 to ensure that the function is defined for all real numbers ( x ). If ( b ) were less than or equal to 0, the function would either be undefined (as in the case of negative bases for non-integer exponents) or not exhibit the characteristic growth behavior of exponential functions. Additionally, a positive base guarantees that the function remains continuous and either increases (for ( b > 1 )) or decreases (for ( 0 < b < 1 )), maintaining its fundamental properties.


Is y equals 1X an exponential function?

No, the equation ( y = 1x ) is not an exponential function; it represents a linear function. In this equation, ( y ) is directly proportional to ( x ), resulting in a straight line when graphed. An exponential function typically has the form ( y = a \cdot b^x ), where ( b ) is a constant greater than zero and not equal to one.


Can the base of an exponential function be a negatice number?

Yes, but perhaps only for exponents greater than 1 .


Why are the y-values of an exponential growth function either always greater than or less than the asymptote of the function?

The exponential function is always increasing or decreasing, so its derivative has a constant sign. However the function is solution of an equation of the kind y' = ay for some constant a. Therefore the function itself never changes sign and is MORE?