For ∫ sin(√x) dx
let y = √x = x1/2
→ dy = 1/2 x-1/2 dx
→ 2x1/2 dy = dx
→ 2y dy = dx
→ ∫ sin(x1/2) dx = ∫(sin y) 2y dy
Now:
∫ uv dx = u∫v dx - ∫(u'∫v dx) dx
→ ∫(sin y) 2y dy = ∫2y sin y dy
= 2y ∫sin y dy - ∫(2 ∫sin y dy) dy
= -2y cos y + 2 sin y + C
= 2 sin y - 2y cos y + C
→ ∫ sin(√x) dx = 2 sin(√x) - 2(√x) cos(√x) + C
The integral of root(sin(x)) is -2 time the elliptic integral of the second order of .25(pi-2x) at 2. For this and other integrals, go to http://integrals.wolfram.com/index.jsp?expr=sqrt(sin(x))&random=false For more information on the elliptic integral functions, go to http://en.wikipedia.org/wiki/Elliptic_integral Hope this helps!
x/sqrt(x)=sqrt(x) integral sqrt(x)=2/3x3/2
The square root of the fifth root of x is the tenth root of x.
Integral[sin(x)cos(x)sin2(x)cos3(x)] dxgather termsintegral[sin3(x) cos4(x)] dxpull one sin(x) as sin is oddintegral[sin2(x) cos4(x) sin(x)] dxusing trig identitiesintegral[(1 - cos2(X)) cos4(x) sin(X)] dxu substitutionu = cos(x)du = - sin(x) dxsointegral[(1 - u2)) (u4) - du] dx- integral[(1- u2)) u4 du] dx= u - 1/3u3 + 1/5u5 du= cos(x) - 1/3cos3(x) + 1/5cos5(x) + C============================
Square root of x = x^0.5
-cos(x) + constant
(1/8)(x-sin 4x)
the integral of the square-root of (x-1)2 = x2/2 - x + C
square root x
replace square root o x with t.
The integral of cot (x) dx is ln (absolute value (sin (x))) + C. Without using the absolute value, you can use the square root of the square, i.e. ln (square root (sin2x)) + C
The derivative of cos x is -sin x, the derivative of square root of x is 1/(2 root(x)). Applying the chain rule, the derivative of cos root(x) is -sin x times 1/(2 root(x)), or - sin x / (2 root x).
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
sin integral is -cos This is so because the derivative of cos x = -sin x
tan(sqrtX) + C
The sequence sqrt(x)*sin(x) does not converge.
It is not totally clear to what the square root applies*; if just the 2, then: d/dx ((√2)sin x) = (√2) cos x if all of 2 sin x, then: d/dx (√(2 sin x)) = cos x / √(2 sin x) * for the second version I would expect "square root all of 2 sin x" but some people would write as given in the question meaning this, so I've given both just in case.