-cos x + Constant
sin2x + c
- cos(1 - X) + C
∫ cos(x) dx = -sin(x) + C
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec
sin integral is -cos This is so because the derivative of cos x = -sin x
-cos(x) + constant
Integral of [1/(sin x cos x) dx] (substitute sin2 x + cos2 x for 1)= Integral of [(sin2 x + cos2 x)/(sin x cos x) dx]= Integral of [sin2 x/(sin x cos x) dx] + Integral of [cos2 x/(sin x cos x) dx]= Integral of (sin x/cos x dx) + Integral of (cos x/sin x dx)= Integral of tan x dx + Integral of cot x dx= ln |sec x| + ln |sin x| + C
convert tan^2x into sin^2x/cos^2x and secant x into 1/cos x combine terms for integral sin^2x/cos^3x dx then sub in u= cos^3x and du=-2sin^2x dx
-cos x + Constant
The integral of cos 5x is 1/5 sin (5x)
The integral of x cos(x) dx is cos(x) + x sin(x) + C
sin2x + c
(5.4 / k) cos(kt)
- cos(1 - X) + C
∫ cos(x) dx = -sin(x) + C
cos*cot + sin = cos*cos/sin + sin = cos2/sin + sin = (cos2 + sin2)/sin = 1/sin = cosec