answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran

Add your answer:

Earn +20 pts
Q: Is (6 8) (-4 -1) (2 3) a function or a relation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

How do you determine if you are given a set of ordered pairs that represent a function?

A relation is a set of ordered pairs.A function is a relation such that for each element there is one and only one second element.Example:{(1, 2), (4, 3), (6, 1), (5, 2)}This is a function because every ordered pair has a different first element.Example:{(1, 2), (5, 6), (7, 2), (1, 3)}This is a relation but not a function because when the first element is 1, the second element can be either 2 or 3.


How do you state the domain of this relation 5) (2 3) (1 -4) (-3 3) (-1 -2)?

If this is the whole of the function, then the domain is {2, 1, -3, -1}. That set can be put in increasing order if you wish but that is not necessary.


Is this relation afunction (-32)(2-4)(26)(-3-5)(0 3)?

No, it is not a function.


Is (3 6) (1 6) (5 6) (8 6) a function or relation?

It is both.


How would you determine from a list of ordered pairs whether it is a function?

When the value of one variable is related to the value of a second variable, we have a relation. A relation is the correspondence between two sets. If x and y are two elements in these sets and if a relation exists between xand y, then we say that x corresponds to y or that y depends on x, and we write x→y. For example the equation y = 2x + 1 shows a relation between x and y. It says that if we take some numbers x multiply each of them by 2 and then add 1, we obtain the corresponding value of y. In this sense, xserves as the input to the relation and y is the output. A function is a special of relation in which each input corresponds to a single (only one) output.Ordered pairs can be used to represent x→y as (x, y).Let determine whether a relation represents a function. For example:1) {(1, 2), (2, 5), (3, 7)}. This relation is a function because there are not ordered pairs with the same firstelement and different second elements. In other words, for different inputs we have different outputs. and the output must verify that when the account is wrong2) {(1, 2), (5, 2), (6, 10)}. This relation is a function because there are not ordered pairs with the same firstelement and different second elements. Even though here we have 2 as the same output of two inputs, 1 and 5, this relation is still a function because it is very important that these inputs, 1 an 5, are different inputs.3) {(1, 2), (1, 4), (3, 5)}. This relation is nota function because there are two ordered pairs, (1, 2) and (1, 4) with the same first element but different secondelements. In other words, for the same inputs we must have the same outputs. of a but