The sequence is neither arithmetic nor geometric.
neither
An arithmetic sequence with common difference of 2.
Common difference, in the context of arithmetic sequences is the difference between one element of the sequence and the element before it.
It is the start of an arithmetic sequence.
An arithmetic sequence is a group or sequence of numbers where, except for the first number, each of the subsequent number is determined by the same rule or set of rules. * * * * * The above answer is incorrect. The rule can only be additive: it cannot be multiplicative or anything else.
It is an arithmetic sequence (with constant difference 0), or a geometric sequence (with constant ratio 1).
The difference between succeeding terms in a sequence is called the common difference in an arithmetic sequence, and the common ratio in a geometric sequence.
An arithmetic sequence is a series of numbers in which each term is obtained by adding a constant value, called the common difference, to the previous term. In contrast, a geometric sequence is formed by multiplying the previous term by a constant value, known as the common ratio. For example, in the arithmetic sequence 2, 5, 8, 11, the common difference is 3, while in the geometric sequence 3, 6, 12, 24, the common ratio is 2. Thus, the primary difference lies in how each term is generated: through addition for arithmetic and multiplication for geometric sequences.
In an arithmetic sequence the same number (positive or negative) is added to each term to get to the next term.In a geometric sequence the same number (positive or negative) is multiplied into each term to get to the next term.A geometric sequence uses multiplicative and divisive formulas while an arithmetic uses additive and subtractive formulas.
The sequence 216 12 23 is neither arithmetic nor geometric.
A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.
Since there is only one number, there is no sensible answer.
an arithmetic sequeunce does not have the sum to infinty, and a geometric sequence has.
Goemetric sequence : A sequence is a goemetric sequence if an/an-1is the same non-zero number for all natural numbers greater than 1. Arithmetic sequence : A sequence {an} is an arithmetic sequence if an-an-1 is the same number for all natural numbers greater than 1.
The numbers 2, 4, 7, 11 are neither strictly arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. Here, the differences between terms are 2, 3, and 4, suggesting a pattern of increasing increments. Following this pattern, the next two terms would be 16 (11 + 5) and 22 (16 + 6).
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 10.
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.