neither
It is the start of an arithmetic sequence.
An arithmetic sequence is where a constant is added to the base case, and then added again until the proscribed limit is reached. An example is 1, 3, 5, 7, where the constant is 2 and the base case is 1. The constant can be negative, such as -4, base case 16, which leads to a descending sequence of 16 12 8 4 0 -4 -8...
An arithmetic sequence with common difference of 2.
It is -148.
The set of odd numbers is an arithmetic sequence. Let say that the sequence has n odd numbers where the first term is a1 and the last one is n. The formula to find the sum on nth terms for an arithmetic sequence is: Sn = (n/2)(a1 + an) or Sn = (n/2)[2a1 + (n - 1)d] where d is the common difference that for odd numbers is 2. Sn = (n/2)(2a1 + 2n - 2)
The sequence 2, 4, 8, 16 is a geometric sequence. In a geometric sequence, each term is obtained by multiplying the previous term by a constant factor. In this case, each term is multiplied by 2 (2 × 2 = 4, 4 × 2 = 8, 8 × 2 = 16).
The numbers 2, 4, 7, 11 are neither strictly arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. Here, the differences between terms are 2, 3, and 4, suggesting a pattern of increasing increments. Following this pattern, the next two terms would be 16 (11 + 5) and 22 (16 + 6).
A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.
You mean what IS a geometric sequence? It's when the ratio of the terms is constant, meaning: 1, 2, 4, 8, 16... The ratio of one term to the term directly following it is always 1:2, or .5. So like, instead of an arithmetic sequence, where you're adding a specific amount each time, in a geometric sequence, you're multiplying by that term.
No, geometric, common ratio 2
arithmetic sequence * * * * * A recursive formula can produce arithmetic, geometric or other sequences. For example, for n = 1, 2, 3, ...: u0 = 2, un = un-1 + 5 is an arithmetic sequence. u0 = 2, un = un-1 * 5 is a geometric sequence. u0 = 0, un = un-1 + n is the sequence of triangular numbers. u0 = 0, un = un-1 + n(n+1)/2 is the sequence of perfect squares. u0 = 1, u1 = 1, un+1 = un-1 + un is the Fibonacci sequence.
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.
An arithmetic sequence is a series of numbers in which each term is obtained by adding a constant value, called the common difference, to the previous term. In contrast, a geometric sequence is formed by multiplying the previous term by a constant value, known as the common ratio. For example, in the arithmetic sequence 2, 5, 8, 11, the common difference is 3, while in the geometric sequence 3, 6, 12, 24, the common ratio is 2. Thus, the primary difference lies in how each term is generated: through addition for arithmetic and multiplication for geometric sequences.
It is arithmetic because it is going up by adding 2 to each number.
It is an arithmetic sequence. To differentiate arithmetic from geometric sequences, take any three numbers within the sequence. If the middle number is the average of the two on either side then it is an arithmetic sequence. If the middle number squared is the product of the two on either side then it is a geometric sequence. The sequence 0, 1, 1, 2, 3, 5, 8 and so on is the Fibonacci series, which is an arithmetic sequence, where the next number in the series is the sum of the previous two numbers. Thus F(n) = F(n-1) + F(n-2). Note that the Fibonacci sequence always begins with the two numbers 0 and 1, never 1 and 1.
Yes, it can both arithmetic and geometric.The formula for an arithmetic sequence is: a(n)=a(1)+d(n-1)The formula for a geometric sequence is: a(n)=a(1)*r^(n-1)Now, when d is zero and r is one, a sequence is both geometric and arithmetic. This is because it becomes a(n)=a(1)1 =a(1). Note that a(n) is often written anIt can easily observed that this makes the sequence a constant.Example:a(1)=a(2)=(i) for i= 3,4,5...if a(1)=3 then for a geometric sequence a(n)=3+0(n-1)=3,3,3,3,3,3,3and the geometric sequence a(n)=3r0 =3 also so the sequence is 3,3,3,3...In fact, we could do this for any constant sequence such as 1,1,1,1,1,1,1...or e,e,e,e,e,e,e,e...In general, let k be a constant, the sequence an =a1 (r)1 (n-1)(0) with a1 =kis the constant sequence k, k, k,... and is both geometric and arithmetic.
1.The Geometric mean is less then the arithmetic mean. GEOMETRIC MEAN < ARITHMETIC MEAN 2.