A set of real numbers is closed under subtraction when you take two real numbers and subtract , the answer is always a real number .
Irrational numbers are not closed under any of the fundamental operations. You can always find cases where you add two irrational numbers (for example), and get a rational result. On the other hand, the set of real numbers (which includes both rational and irrational numbers) is closed under addition, subtraction, and multiplication - and if you exclude the zero, under division.
A set of numbers is considered to be closed if and only if you take any 2 numbers and perform an operation on them, the answer will belong to the same set as the original numbers, than the set is closed under that operation. If you add any 2 real numbers, your answer will be a real number, so the real number set is closed under addition. If you divide any 2 whole numbers, your answer could be a repeating decimal, which is not a whole number, and is therefore not closed. As for 0 and 3, the most specific set they belong to is the whole numbers (0, 1, 2, 3...) If you add 0 and 3, your answer is 3, which is also a whole number. Therefore, yes 0 and 3 are closed under addition
No. Negative numbers are real but their square roots are not.
yes, because an integer is a positive or negative, rational, whole number. when you subject integers, you still get a positive or negative, rational, whole number, which means that under the closure property of real numbers, the set of integers is closed under subtraction.
yes because real numbers are any number ever made and they can be closed under addition
Real numbers are closed under addition and subtraction. To get a number outside the real number system you would have to use square root.
Yes, they are.
Natural (ℕ), integer (ℤ), rational (ℚ), real (ℝ) and complex (ℂ) numbers are all closed under addition.
Real Numbers are said to be closed under addition because when you add two Real Numbers together the result will always be a Real Number.
Because adding any set of real numbers together will result in another real number.
A set of real numbers is closed under subtraction when you take two real numbers and subtract , the answer is always a real number .
Irrational numbers are not closed under any of the fundamental operations. You can always find cases where you add two irrational numbers (for example), and get a rational result. On the other hand, the set of real numbers (which includes both rational and irrational numbers) is closed under addition, subtraction, and multiplication - and if you exclude the zero, under division.
A set of numbers is considered to be closed if and only if you take any 2 numbers and perform an operation on them, the answer will belong to the same set as the original numbers, than the set is closed under that operation. If you add any 2 real numbers, your answer will be a real number, so the real number set is closed under addition. If you divide any 2 whole numbers, your answer could be a repeating decimal, which is not a whole number, and is therefore not closed. As for 0 and 3, the most specific set they belong to is the whole numbers (0, 1, 2, 3...) If you add 0 and 3, your answer is 3, which is also a whole number. Therefore, yes 0 and 3 are closed under addition
no
The set of real numbers is closed under addition, subtraction, multiplication, and division (except that you cannot divide by zero). By closed, this means that if the two numbers in the operation are both real numbers, the result of the operation will always be a real number. Dividing by zero is undefined (for all practical purposes)
No. Negative numbers are real but their square roots are not.