answersLogoWhite

0

yes, because an integer is a positive or negative, rational, whole number. when you subject integers, you still get a positive or negative, rational, whole number, which means that under the closure property of real numbers, the set of integers is closed under subtraction.

User Avatar

Wiki User

8y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
BeauBeau
You're doing better than you think!
Chat with Beau
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Is the set of integers closed under subtraction?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

Is the set of whole numbers closed under subtraction?

It depends on your definition of whole numbers. The classic definition of whole numbers is the set of counting numbers and zero. In this case, the set of whole numbers is not closed under subtraction, because 3-6 = -3, and -3 is not a member of this set. However, if you use whole numbers as the set of all integers, then whole numbers would be closed under subtraction.


Which set of numbers is closed under subtraction?

A set of real numbers is closed under subtraction when you take two real numbers and subtract , the answer is always a real number .


True or False The set of whole numbers is closed under subtraction Why?

False. The set of whole numbers is not closed under subtraction. Closure under subtraction means that when you subtract two whole numbers, the result is also a whole number. However, this is not always the case with whole numbers. For example, subtracting 5 from 3 results in -2, which is not a whole number.


Is the set of real numbers closed under addition?

Yes. The set of real numbers is closed under addition, subtraction, multiplication. The set of real numbers without zero is closed under division.


What does it mean if an integer is closed?

You don't say that "an integer is closed". It is the SET of integers which is closed UNDER A SPECIFIC OPERATION. For example, the SET of integers is closed under the operations of addition and multiplication. That means that an addition of two members of the set (two integers in this case) will again give you a member of the set (an integer in this case).