Playfair Axiom
Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the given line (-7,3); x=4
true
Both straight line equations will have the same slope or gradient but the y intercepts wll be different
Elliptical geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry was replaced by the statement that through any point in the plane, there exist no lines parallel to a given line. A consistent geometry - of a space with positive curvature - was developed on that basis.It is, therefore, by definition that parallel lines do not exist in elliptical geometry.
Without an equality sign the given terms can't be considered to be an equation but in general when lines are parallel they have the same slope but different y intercepts.
The Playfair Axiom (or "Parallel Postulate")
Another name for the Playfair Axiom is the Euclid's Parallel Postulate. It states that given a line and a point not on that line, there is exactly one line parallel to the given line passing through the given point.
Elliptical geometry is like Euclidean geometry except that the "fifth postulate" is denied. Elliptical geometry postulates that no two lines are parallel.One example: define a point as any line through the origin. Define a line as any plane through the origin. In this system, the first four postulates of Euclidean geometry hold; through two points, there is exactly one line that contains them (i.e.: given two lines through the origin, there is one plane that contains them) and so on. However, it is nottrue that given a line and a point not on the line that there is a parallel line through the point (that is, given a plane through the origin, and a line through the origin, not on the plane, there is no other plane through the origin that is parallel to the given plane).
Assume there are no lines through a given point that is parallel to a given line or assume that there are many lines through a given point that are parallel to a given line. There exist a line l and a point P not on l such that either there is no line m parallel to l through P or there are two distinct lines m and n parallel to l through P.
Euclid's parallel postulate.
zero
... given line. This is one version of Euclid's fifth postulate, also known as the Parallel Postulate. It is quite possible to construct consistent systems of geometry where this postulate is negated - either many parallel lines or none.
Parallel straight line equations have the same slope but with different y intercepts
infinitely many
Parallel
"Euclidean" geometry is the familiar "standard" geometry. Until the 19th century, it was simply "geometry". It features infinitely divisible space, up to three dimensions, and, most notably, the "parallel postulate": "Given a line, and a point not on the line, there is exactly one line that can be drawn through the point and parallel to the given line."
Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the given line (-7,3); x=4