Assume there are no lines through a given point that is parallel to a given line or assume that there are many lines through a given point that are parallel to a given line. There exist a line l and a point P not on l such that either there is no line m parallel to l through P or there are two distinct lines m and n parallel to l through P.
Euclid's parallel postulate.
No, the hyperbolic parallel postulate is not one of Euclid's original five postulates. Euclid's fifth postulate, known as the parallel postulate, states that given a line and a point not on that line, there is exactly one line parallel to the original line that passes through the point. Hyperbolic geometry arises from modifying this postulate, allowing for multiple parallel lines through the given point, leading to a different set of geometric principles.
Parallel straight line equations have the same slope but with different y intercepts
Finding the midpoint of a segment Drawing a perpendicular line segment from a given point to a given segment Drawing a perpendicular line segment through a given point on a given segment Drawing a line through a given point parallel to a given line
True. In Euclidean geometry, if there is a line and a point not on that line, there exists exactly one line that can be drawn through the point that is parallel to the given line. This is known as the Parallel Postulate, which states that for a given line and a point not on it, there is one and only one line parallel to the given line that passes through the point.
Playfair Axiom
Another name for the Playfair Axiom is the Euclid's Parallel Postulate. It states that given a line and a point not on that line, there is exactly one line parallel to the given line passing through the given point.
Assume there are no lines through a given point that is parallel to a given line or assume that there are many lines through a given point that are parallel to a given line. There exist a line l and a point P not on l such that either there is no line m parallel to l through P or there are two distinct lines m and n parallel to l through P.
Euclid's parallel postulate.
zero
infinitely many
Exactly one. No more and no less.
"Euclidean" geometry is the familiar "standard" geometry. Until the 19th century, it was simply "geometry". It features infinitely divisible space, up to three dimensions, and, most notably, the "parallel postulate": "Given a line, and a point not on the line, there is exactly one line that can be drawn through the point and parallel to the given line."
Write an equation in slope-intercept form for the line that passes through the given point and is parallel to the given line (-7,3); x=4
Parallel straight line equations have the same slope but with different y intercepts
Finding the midpoint of a segment Drawing a perpendicular line segment from a given point to a given segment Drawing a perpendicular line segment through a given point on a given segment Drawing a line through a given point parallel to a given line