An exponential function is a nonlinear function in the form y=ab^x, where a isn't equal to zero. In a table, consecutive output values have a common ratio. a is the y-intercept of the exponential function and b is the rate of growth/decay.
Chat with our AI personalities
This question appears to relate to some problem for which we have no information. The graph of an exponential function shows a doubling at regular intervals. But we are not told what the role is of b, so we cannot comment further.
Input/output table, description in words, Equation, or some type of graph
The inverse of an exponential function is a log function. For example, the inverse of f(x) = ax is f-1(x) = logax. "a" is called the base of the exponential and log functions.
The wording is confusing, as a quadratic function is normally a function of one variable. If you mean the graph of y = f(x) where f is a quadratic function, then changes to the variable y will do some of those things. The transformation y --> -y will reflect the graph about the x-axis. The transformation y --> Ay (where A is real number) will cause the graph to stretch or shrink vertically. The transformation y --> y+A will translate it up or down.
1. Decide if the graph looks like any standard type of graph you've seen before. Is it a type of sine or cosine? A quadratic? A circle or ellipse? A line? An exponential? (You get the idea.) If you can't find a standard type to match your desired graph, pick one that looks close to it and recognize that you will be doing an approximation to your function.2. Once you have an idea of what you're graph should be like, think about the equations that are used to describe that graph. Where do the numbers go and how do they affect how the graph looks/moves/ behaves? Some functions, such as circles, hyperbolas, and quadratics, have standard equations with variables based on the important features of the graph (such as the center, maximums or minimums).3. Find the important and/or interesting parts of the graph and use them in the equation. As stated before, ellipses and such have special equations to describe them. Sines and cosines require the amplitude, frequency, and phase shift.4. Check your equation if you can. It's always good to plug a few of the points that are in your graph to make sure your equation is accurate. It's especially good to try out points you did NOT use to find your equation. If it works for these, then you probably did it right.