It can be, but it need no be.
Point A. APEX
Yuo cannot include a graphical illustration here. Take a look at the Wikipedia, under "exponential function" and "logistic function". Basically, the exponential function increases faster and faster over time. The logistics function initially increases similarly to an exponential function, but then eventually flattens out, tending toward a horizontal asymptote.
It is an exponential function.
an exponential function flipped over the line y=x
The graph of is shifted 3 units down and 2 units right. Which equation represents the new graph?
Exponential Decay. hope this will help :)
The trend of an exponential graph depends on the base of the exponential function. If the base is greater than one (e.g., (y = a \cdot b^x) with (b > 1)), the graph shows exponential growth, rising steeply as (x) increases. Conversely, if the base is between zero and one (e.g., (y = a \cdot b^x) with (0 < b < 1)), the graph depicts exponential decay, decreasing rapidly as (x) increases. In both cases, the graph approaches the x-axis asymptotically but never touches it.
The relationship between a logarithmic function and its graph is that the graph of a logarithmic function is the inverse of an exponential function. This means that the logarithmic function "undoes" the exponential function, and the graph of the logarithmic function reflects this inverse relationship.
False.
The graph of a linear function is a line with a constant slope. The graph of an exponential function is a curve with a non-constant slope. The slope of a given curve at a specified point is the derivative evaluated at that point.
As time passes - as the graph goes more and more to the right, usually - the graph will get closer and closer to the horizontal axis.
f(x)=2X-2
Point A. APEX
point a.
Yuo cannot include a graphical illustration here. Take a look at the Wikipedia, under "exponential function" and "logistic function". Basically, the exponential function increases faster and faster over time. The logistics function initially increases similarly to an exponential function, but then eventually flattens out, tending toward a horizontal asymptote.
The graph of an exponential function f(x) = bx approaches, but does not cross the x-axis. The x-axis is a horizontal asymptote.
An exponential graph typically has a characteristic J-shaped curve. It rises steeply as the value of the independent variable increases, particularly for positive bases greater than one. If the base is between zero and one, the graph decreases towards the x-axis but never touches it, creating a decay curve. Overall, exponential graphs show rapid growth or decay depending on the base value.