A^2-2ab+B^2 is actually (A+B)^2
AB squared is A^2B^2 or (AB)^2
It is: 2b squared
It is b*b
B squared equals c squared minus a squared then to find B take the square root of you answer for b squared
a squared - b squared = (a+b)(a-b)
Since a squared plus b squared equals c squared, that is the same as c equals the square root of a squared plus b squared. This can be taken into squaring and square roots to infinity and still equal c, as long as there is the same number of squaring and square roots in the problem. Since this question asks for a and b squared three times, and also three square roots of a and b both, they equal c. Basically, they cancel each other out.
he made the theorem C squared = A squared + B squared and A squared = C squared - B squared or B squared = C squared - A squared
a(squared)+b(squared)=c(squared) The largest number is the c, and you can choose the a and b, since you need to find the a or the b. For example: You have the numbers 3, and 5 and you needed to find b. a(squared+b(squared)=c(squared) 3(squared)+b(squared)=5(squared) 9+b(squared)=25 -9 -9 b(squared)=16 Then take the square root b=4
It is: 2b squared
It is b*b
if you mean a right triangle then the formula is a squared + b squared = c squared. a and b are the legs and c is the hypotunese. the legs are the smallest number then the hypotenese. An example is a=3 , b= ? and c =5 use the formula : a squared + b squared = c squared 3 squared + b squared = 5 squared 9 + b squared = 25 -9 - 9 _________________________________________ b squared = 16 Then you have to take the squared root of 16 which is 4 and 4 is b squared.
b to the fourth power
b = 14324.80366
b= 10
B squared equals c squared minus a squared then to find B take the square root of you answer for b squared
(a+b)2
In the Pythagorean Theorem b is not twice a. The formula is [ a squared + b squared = c squared].
a squared - b squared = (a+b)(a-b)