The complex conjugate of a number in the form a + bi is simply the same number with the sign of the imaginary part changed. In this case, the number is 7 + 3i, so its complex conjugate would be 7 - 3i. This is because the complex conjugate reflects the number across the real axis on the complex plane.
Chat with our AI personalities
[7 - 3i] To find the conjugate: the sign of the real part stays the same, and the sign of the imaginary part is reversed. So the conjugate of [7 + 3i] is [7 - 3i]
The conjugate is 7 - 3i is 7 + 3i.
The conjugate is 7-5i
Yes, all real numbers are complex numbers.
Better get a textbook that explains this in more detail. You can also get a brief summary at Wikipedia, or other online sites. In any case, here is a brief summary. For addition and substraction, you add (or subtract) the real and imaginary parts separately. For example, (4 + 3i) + (7 - 2i) = 11 + 1. For multiplication, multiply each part of one number with each part of the other number - and remember that i2 = -1. For example, (4 + 3i) x (7 - 2i) = 28 - 8i + 21i - 6i2 = 28 + 13i - 6(-1) = 34 + 13i. Division is a bit more complicated. For example, to divide by (3 + 4i) you have to multiply numerator and denominator by the complex conjugate of this number, that is, change the sign of the imaginary part; in this case, (3 - 4i). Multiplication and division are actually quite a lot easier if you convert the complex number to polar coordinates, that is, a distance and an angle. Here is a quick example: (4 angle 30 degrees) x (5 angle 20 degrees) = (4 x 5) angle (30 + 20 degrees) = 20 angle 50 degrees (a length of 20, at an angle of 50 degrees). Most scientific calculators have special functions to convert from rectangular to polar coordinates and back.
2.2 x 10-8