(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
2 x cosine squared x -1 which also equals cos (2x)
2
d/dx (cos x)^2 using the rule of chain, take derivative of the external, times derivative of the internal = 2 (cos x)(-sin x) =-2sinx cos x = - sin(2x)
lim(h→0) (sin x cos h + cos x sin h - sin x)/h As h tends to 0, both the numerator and the denominator have limit zero. Thus, the quotient is indeterminate at 0 and of the form 0/0. Therefore, we apply l'Hopital's Rule and the limit equals: lim(h→0) (sin x cos h + cos x sin h - sin x)/h = lim(h→0) (sin x cos h + cos x sin h - sin x)'/h' = lim(h→0) [[(cos x)(cos h) + (sin x)(-sin h)] + [(-sin x)(sin h) + (cos x)(cos h)] - cos x]]/0 = cosx/0 = ∞
(2 sin^2 x - 1)/(sin x - cos x) = sin x + cos x (sin^2 x + sin^2 x - 1)/(sin x - cos x) =? sin x + cos x [sin^2 x - (1 - sin^2 x)]/(sin x - cos x) =? sin x + cos x (sin^2 x - cos^2 x)/(sin x - cos x) =? sin x + cos x [(sin x - cos x)(sin x + cos x)]/(sin x - cos x) =? sin x + cos x sin x + cos x = sin x + cos x
22
The deriviative of sin2 x + cos2 x is 2 cos x - 2 sin x
Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.
2 x cosine squared x -1 which also equals cos (2x)
2
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)
Cos^2 x = 1 - sin^2 x
(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)
tan^2(x) Proof: cos^2(x)+sin^2(x)=1 (Modified Pythagorean theorem) sin^2(x)=1-cos^2(x) (Property of subtraction) cos^2(x)-1/cos^2(x)=? sin^2(x)/cos^2(x)=? (Property of substitution) sin(x)/cos(x) * sin(x)/cos(x) = tan(x) * tan(x) (Definition of tanget) = tan^2(x)
Since the word 'equals' appears in your questions it might be what is called a trigonometric identity, in other words a statement about a relationship between various trigonometric values.
The answer is 1. sin^2 x cos^2/sin^2 x 1/cos^2 cos^2 will be cancelled =1 sin^2 also will be cancelled=1 1/1 = 1