answersLogoWhite

0


Best Answer

(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared)

= 1-cos^2x = sin^2x (sin squared x)

User Avatar

Sheldon Lynch

Lvl 9
2y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is (1 cos x)(1- cos x)?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

How do you prove that (1 plus cotx)2-2cotx 1(1-cos)(1 plus cos)?

Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.


How do you solve sinx divided by 1 plus cosx plus cosx divided by sinx?

sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x


Prove each Indentity tanx mins sinx divided by tanxsinx equals tanxsinx divided by tanx plus sinx?

(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True


What is the integral of 1 divided by sin x plus cos x?

The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?


How do you solve x2 equals cos x?

You can solve this to the accuracy of your liking by using Newton's method: xn+1 = xn - f(xn) / f'(xn) In this case, we'll say f(x) = x2 - cos(x) f'(x) would then be 2x + sin(x) Let's take a rough guess, and start with x0 = 0.5 x1 = 0.5 - (0.52 - cos(0.5)) / (2(0.5) + sin(0.5)) = 0.92420692729319751536 x2 = x1 - (x12 - cos(x1)) / (2x1 + sin(x1)) = 0.82910575599741780916 x3 = x2 - (x22 - cos(x2)) / (2x2 + sin(x2)) = 0.82414613172819520712 x4 = x3 - (x32 - cos(x3)) / (2x3 + sin(x3)) = 0.8241323124099124229 x5 = x4 - (x42 - cos(x4)) / (2x4 + sin(x4)) = 0.82413231230252242297 x6 = x5 - (x52 - cos(x5)) / (2x5 + sin(x5)) = 0.82413231230252242296 Now we can test our answer: 0.824132312302522422962 = 0.67919406818110235182 cos(0.82413231230252242296) = 0.67919406818110235183 So we're accurate to the nearest ten quintillionth.

Related questions

Prove identity cos 2xcot2 x-1cot2 x1?

the questions is 2x=(cot^2 x-1)/(cot^2 x+1)


What is sec x cos x?

sec x = 1/cos x sec x cos x = [1/cos x] [cos x] = 1


How do you prove that (1 plus cotx)2-2cotx 1(1-cos)(1 plus cos)?

Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.


Simplify The Square root of x divided by x?

sqr.rtx/x= sqrt.x*sqr.rtx/sqr.rtx=x/x*sqrt.x=1/sqrt.x. x1/2 = x1/2 * x1/2 = x = 1 (x1/2) /x= 1/x1/2


How do you solve sinx divided by 1 plus cosx plus cosx divided by sinx?

sin x/(1+cos x) + cos x / sin x Multiply by sin x (1+cos x) =[(sin^2 x + cos x(1+cos x) ] / sin x (1+cos x) = [(sin^2 x + cos x + cos^2 x) ] / sin x (1+cos x) sin^2 x + cos^2 x = 1 = (1+cos x) / sin x (1+cos x) = 1/sin x


What does cosx divided by 1-sinx equal?

cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x


How does sin2x divided by 1-cosx equal 1 plus cosx?

sin2x / (1-cos x) = (1-cos2x) / (1-cos x) = (1-cos x)(1+cos x) / (1-cos x) = (1+cos x) sin2x=1-cos2x as sin2x+cos2x=1 1-cos2x = (1-cos x)(1+cos x) as a2-b2=(a-b)(a+b)


Prove each Indentity tanx mins sinx divided by tanxsinx equals tanxsinx divided by tanx plus sinx?

(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True


What is the integral of 1 divided by sin x plus cos x?

The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?The question is ambiguous: does it refer to 1/sin(x) + cos(x) or to 1/[sin(x)+cos(x)]?


Sin x divided by 1 minus cos x equals csc plus cot x?

It helps to convert this kind of equation into one that has only sines and cosines, by using the basic definitions of the other functions in terms of sines and cosines. sin x / (1 - cos x) = csc x + cot x sin x / (1 - cos x) = 1 / sin x + cos x / sin x Now it should be easy to do some simplifications: sin x / (1 - cos x) = (1 + cos x) / sin x Multiply both sides by 1 + cos x: sin x (1 + cos) / ((1 - cos x)(1 + cos x)) = (1 + cos x)2 / sin x sin x (1 + cos) / (1 - cos2x) = (1 + cos x)2 / sin x sin x (1 + cos) / sin2x = (1 + cos x)2 / sin x sin x (1 + cos x) / sin x = (1 + cos x)2 1 + cos x = (1 + cos x)2 1 = 1 + cos x cos x = 0 So, cos x can be pi/2, 3 pi / 2, etc. In some of the simplifications, I divided by a factor that might be equal to zero; this has to be considered separately. For example, what if sin x = 0? Check whether this is a solution to the original equation.


How do you solve x2 equals cos x?

You can solve this to the accuracy of your liking by using Newton's method: xn+1 = xn - f(xn) / f'(xn) In this case, we'll say f(x) = x2 - cos(x) f'(x) would then be 2x + sin(x) Let's take a rough guess, and start with x0 = 0.5 x1 = 0.5 - (0.52 - cos(0.5)) / (2(0.5) + sin(0.5)) = 0.92420692729319751536 x2 = x1 - (x12 - cos(x1)) / (2x1 + sin(x1)) = 0.82910575599741780916 x3 = x2 - (x22 - cos(x2)) / (2x2 + sin(x2)) = 0.82414613172819520712 x4 = x3 - (x32 - cos(x3)) / (2x3 + sin(x3)) = 0.8241323124099124229 x5 = x4 - (x42 - cos(x4)) / (2x4 + sin(x4)) = 0.82413231230252242297 x6 = x5 - (x52 - cos(x5)) / (2x5 + sin(x5)) = 0.82413231230252242296 Now we can test our answer: 0.824132312302522422962 = 0.67919406818110235182 cos(0.82413231230252242296) = 0.67919406818110235183 So we're accurate to the nearest ten quintillionth.


What is (1 plus cos x)(1- cos x)?

(1+cosx)(1-cosx)= 1 +cosx - cosx -cos^2x (where ^2 means squared) = 1-cos^2x = sin^2x (sin squared x)