If you mean in the group {1, -1, i, -i, j, -j, k, -k}, the identity element is 1.
Chat with our AI personalities
The property of multiplicative identity, i, of a set S is an element, is that for every element x in S,x * i = x = i * x
Assuming that the question is in the context of the operation "addition", The set of odd numbers is not closed under addition. That is to say, if x and y are members of the set (x and y are odd) then x+y not odd and so not a member of the set. There is no identity element in the group such that x+i = i+x = x for all x in the group. The identity element under addition of integers is zero which is not a member of the set of odd numbers.
The identity property for a set states that there exists an element in the set, denoted by 0, such that for all members, x, of the set,x + 0 = 0 + x = x.
They would form an ionic compound.
The order of a group is the same as its cardinality - i.e. the number of elements the set contains. The order of a particular element is the order of the (cyclic) group generated by that element - i.e. the order of the group {...a-4, a-3, a-2, a-1, e, a, a2, a3, a4...}. If these powers do not go on forever, it will have a finite order; otherwise the order will be infinite.