The order of a group is the same as its cardinality - i.e. the number of elements the set contains. The order of a particular element is the order of the (cyclic) group generated by that element - i.e. the order of the group {...a-4, a-3, a-2, a-1, e, a, a2, a3, a4...}. If these powers do not go on forever, it will have a finite order; otherwise the order will be infinite.
Chat with our AI personalities
The order of a group is the same as its cardinality - i.e. the number of elements the set contains. The order of a particular element is the order of the (cyclic) group generated by that element - i.e. the order of the group {...a-4, a-3, a-2, a-1, e, a, a2, a3, a4...}. If these powers do not go on forever, it will have a finite order; otherwise the order will be infinite.
If you mean in the group {1, -1, i, -i, j, -j, k, -k}, the identity element is 1.
They would form an ionic compound.
some examples of symbols for permuation groups are: Sn Cn An These are the symmetric group, the cyclic group and the alternating group of order n. (Alternating group is order n!/2, n>2) One other is the Dihedral group Dn of order 2n.
The abelian groups of order 24 are C3xC8, C2xC12, C2xC2xC6. There are other 12 non-abelian groups of order 24