5
The nth term is 5n-3 and so the next term will be 22
It is 4n+5 and so the next term will be 25
The nth term in the arithmetic progression 10, 17, 25, 31, 38... will be equal to 7n + 3.
You can see that all the numbers go up by 7. This means that the first part of the nth term rule for this sequence is 7n. Now, you have to find out how to get from 7 to 3, 14 to 10, 21 to 17 ... this is because we are going up in the 7 times table. To get from the seventh times table to the sequence, you take away four. So the answer is : 7n-4
5n - 3
The nth term is 5n-3 and so the next term will be 22
t(n) = 12*n + 5
tn=5n-3
It is: nth term = 35-9n
-11n + 17
To find the nth term of the sequence 9, 12, 17, 24, 33, we first look at the differences between consecutive terms: 3, 5, 7, and 9. These differences themselves increase by 2, indicating a quadratic relationship. We can derive the nth term formula as ( a_n = n^2 + 8n + 1 ). Thus, the nth term of the sequence can be expressed as ( a_n = n^2 + 8n + 1 ).
To find the nth term of the sequence 9, 12, 17, 24, 33, 44, we first observe the differences between consecutive terms: 3, 5, 7, 9, 11. These differences form an arithmetic sequence with a common difference of 2. This suggests that the nth term can be expressed as a quadratic function. By deriving the formula, the nth term is given by ( a_n = n^2 + 8n - 1 ).
7n - 4
It is 4n+5 and so the next term will be 25
The nth term in the arithmetic progression 10, 17, 25, 31, 38... will be equal to 7n + 3.
The given sequence is an arithmetic sequence with a common difference of 4 between each term. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term (a) is -3, the common difference (d) is 4, and the term number (n) is the position in the sequence. So, the nth term of the given sequence is -3 + (n-1)4 = 4n - 7.
The nth term is: 3n+2 and so the next number will be 20