Best Answer

sin(pi/4) and cos(pi/4) are both the same. They both equal (√2)/2≈0.7071■

Q: What is the sin pi over 4?

Write your answer...

Submit

Still have questions?

Continue Learning about Algebra

sin pi/2 =1 sin 3 pi/2 is negative 1 ( it is in 3rd quadrant where sin is negative

sin(3π/2) = -1

tangent of pi/4 = 1

1/ Tan = 1/ (Sin/Cos) = Cos/Sin = Cot (Cotangent)

You can calculate that on any scientific calculator. Presumably, for any expression that involves "pi" the angle should be in radians, so be sure to set the calculator to radians first.

Related questions

cos(a)cos(b)-sin(a)sin(b)=cos(a+b) a=7pi/12 and b=pi/6 a+b = 7pi/12 + pi/6 = 7pi/12 + 2pi/12 = 9pi/12 We want to find cos(9pi/12) cos(9pi/12) = cos(3pi/4) cos(3pi/4)= cos(pi-pi/4) cos(pi)cos(pi/4)-sin(pi)sin(pi/4) cos(pi)=-1 sin(pi)=0 cos(pi/4) = √2/2 sin(pi/4) =√2/2 cos(pi)cos(pi/4)-sin(pi)sin(pi/4) = - cos(pi/4) = -√2/2

11pi/12 = pi - pi/12 cos(11pi/12) = cos(pi - pi/12) cos(a-b) = cos(a)cos(b)+sin(a)sin(b) cos(pi -pi/12) = cos(pi)cos(pi/12) + sin(pi)sin(pi/12) sin(pi)=0 cos(pi)=-1 Therefore, cos(pi -pi/12) = -cos(pi/12) pi/12=pi/3 -pi/4 cos(pi/12) = cos(pi/3 - pi/4) = cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) cos(pi/3)=1/2 sin(pi/3)=sqrt(3)/2 cos(pi/4)= sqrt(2)/2 sin(pi/4) = sqrt(2)/2 cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) = (1/2)(sqrt(2)/2 ) + (sqrt(3)/2)( sqrt(2)/2) = sqrt(2)/4 + sqrt(6) /4 = [sqrt(2)+sqrt(6)] /4 Therefore, cos(pi/12) = (sqrt(2)+sqrt(6))/4 -cos(pi/12) = -(sqrt(2)+sqrt(6))/4 cos(11pi/12) = -(sqrt(2)+sqrt(6))/4

sin(pi/2)=1

sin(pi) = 0 so 4*sin(pi) = 0 so Y = 0

sin pi/2 =1 sin 3 pi/2 is negative 1 ( it is in 3rd quadrant where sin is negative

As tan(x)=sin(x)/cos(x) and sin(pi/4) = cos(pi/4) (= sqrt(2)/2) then tan(pi/4) = 1

sin x - cos x = 0sin x = cos x(sin x)^2 = (cos x)^2(sin x)^2 = 1 - (sin x)^22(sin x)^2 = 1(sin x)^2 = 1/2sin x = ± √(1/2)sin x = ± (1/√2)sin x = ± (1/√2)(√2/√2)sin x = ± √2/2x = ± pi/4 (± 45 degrees)Any multiple of 2pi can be added to these values and sine (also cosine) is still ± √2/2. Thus all solutions of sin x - cos x = 0 or sin x = cos x are given byx = ± pi/4 ± 2npi, where n is any integer.By choosing any two integers , such as n = 0, n = 1, n = 2 we can find some solutions of sin x - cos x = 0.n = 0, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(0)(pi) = ± pi/4 ± 0 = ± pi/4n = 1, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(1)(pi) = ± pi/4 ± 2pi = ± 9pi/4n = 2, x = ± pi/4 ± (2)(n)(pi) = ± pi/4 ± (2)(2)(pi) = ± pi/4 ± 4pi = ± 17pi/4

sin(pi) = 0

The four roots are cos(theta)+i*sin(theta) where theta = pi/4, 3*pi/4, 5*pi/4 and 7*pi/4.

sin(3π/2) = -1

sin(2*pi/65537) = 0.0001 cos(2*pi/65537) = 1.0000 to 4 dp.

Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. However, I am assuming the question is about sin (5pi/12). If not, please resubmit your question spelling out the symbols as "plus", "minus", "times" sin(5pi/12) = sin(pi/4 + pi/6) = sin(pi/4)*cos(pi/6) + cos(pi/4)*sin(pi/6) = âˆš2/2*âˆš3/2 + âˆš2/2*1/2 = âˆš2(âˆš3 + 1)/4