(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)
The same as the period of y = sin x. This period is equal to (2 x pi).
The amplitude is 4 .
'Y' varies between -4 and +4. Viewed as a wave, its amplitude is 4.
Sin(2*pi/6) = sin(pi/3) which, by definition, is 0.5 If you wish, you can calculate y/1! - y^3/3! + y^5/5! - y^7/7! + ... where y = pi/3.
(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)
2
Pi
The period of y=sin(x) is 2*pi, so sin(x) repeats every 2*pi units. sin(5x) repeats every 2*pi/5 units. In general, the period of y=sin(n*x) is 2*pi/n.
Pi radians (180 degrees) is.
0.5
y = sin(-x)Amplitude = 1Period = 2 pi
The same as the period of y = sin x. This period is equal to (2 x pi).
sin(theta) reach a maximum at pi / 2 + all even multiple of 2 pi. As a result, the smallest positive value of x where y = sin(2x) is maximal is pi / 2.
The amplitude is 4 .
Two thirds pi, or rather 2pi/3.
'Y' varies between -4 and +4. Viewed as a wave, its amplitude is 4.