Approximately .3328323833
cos 34o ≈ 0.829 cos 34 = 0.86074
Sin cos sec cosec
The value of Pi is 3.14 so the value of Pi by 2 is 6.28.
sin(pi/4) and cos(pi/4) are both the same. They both equal (√2)/2≈0.7071■
cos(a)cos(b)-sin(a)sin(b)=cos(a+b) a=7pi/12 and b=pi/6 a+b = 7pi/12 + pi/6 = 7pi/12 + 2pi/12 = 9pi/12 We want to find cos(9pi/12) cos(9pi/12) = cos(3pi/4) cos(3pi/4)= cos(pi-pi/4) cos(pi)cos(pi/4)-sin(pi)sin(pi/4) cos(pi)=-1 sin(pi)=0 cos(pi/4) = √2/2 sin(pi/4) =√2/2 cos(pi)cos(pi/4)-sin(pi)sin(pi/4) = - cos(pi/4) = -√2/2
11pi/12 = pi - pi/12 cos(11pi/12) = cos(pi - pi/12) cos(a-b) = cos(a)cos(b)+sin(a)sin(b) cos(pi -pi/12) = cos(pi)cos(pi/12) + sin(pi)sin(pi/12) sin(pi)=0 cos(pi)=-1 Therefore, cos(pi -pi/12) = -cos(pi/12) pi/12=pi/3 -pi/4 cos(pi/12) = cos(pi/3 - pi/4) = cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) cos(pi/3)=1/2 sin(pi/3)=sqrt(3)/2 cos(pi/4)= sqrt(2)/2 sin(pi/4) = sqrt(2)/2 cos(pi/3)cos(pi/4)+sin(pi/3) sin(pi/4) = (1/2)(sqrt(2)/2 ) + (sqrt(3)/2)( sqrt(2)/2) = sqrt(2)/4 + sqrt(6) /4 = [sqrt(2)+sqrt(6)] /4 Therefore, cos(pi/12) = (sqrt(2)+sqrt(6))/4 -cos(pi/12) = -(sqrt(2)+sqrt(6))/4 cos(11pi/12) = -(sqrt(2)+sqrt(6))/4
(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)
cos pi over four equals the square root of 2 over 2 This value can be found by looking at a unit circle. Cos indicates it is the x value of the point pi/4 which is (square root 2 over 2, square root 2 over 2)
Assuming the angle is in radians - which is usually the case if your angle includes "pi" - then it is minus 1.
You cannot prove it because it is not true! cos(0) = 1 cos(2*pi) = 1 cos(4*pi) = 1 ... cos(2*k*pi) = 1 for all integers k or, if you still work in degrees, cos(0) = 1 cos(360) = 1 cos(720) = 1 ... cos(k*360) = 1 for all integers k
1.25
pi cos(pi x)
-(pi)*sin(pi*x)
Either you mean "cos(x) multiplied by pi", (i.e pi*cos(x)) or "cos(pi)" (i.e cosine of pi), but it is unclear which you mean from the question. Please clarify.
-1
Can you please claify if you mean x=y^2/ pi*cos(x) , or x=y^2/cos(pi), since they are very different sums.