You can also write this as ln(6 times 4)
I don't believe that the answer is ln(x)x^(ln(x)-2), since the power rule doesn't apply when you have the variable in the exponent. Do the following instead:y x^ln(x)Taking the natural log of both sides:ln(y)ln(x) * ln(x)ln(y) ln(x)^2Take the derivative of both sides, using the chain rule:1/y * y' 2 ln(x) / xy' 2 ln(x)/ x * yFinally, substitute in the first equation, y x^ln(x):y' 2 ln(x) / x * x^ln(x)y'2 ln(x) * x ^ (ln(x) - 1)Sorry if everything is formatted really badly, this is my first post on answers.com.
int(ln(x2)dx)=xln|x2|-2x int(ln2(x)dx)=x[(ln|x|-2)ln|x|+2]
The derivative of e^u(x) with respect to x: [du/dx]*[e^u(x)]For a general exponential: b^x, can be rewritten as b^x = e^(x*ln(b))So derivative of b^x = derivative of e^u(x), where u(x) = x*ln(b).Derivative of x*ln(b) = ln(b). {remember b is just a constant, so ln(b) is a constant}So derivative of b^x = ln(b)*e^(x*ln(b))= ln(b) * b^x(from above)
x^(ln(2)/ln(x)-1)
Ln 4 + 3Ln x = 5Ln 2 Ln 4 + Ln x3= Ln 25 = Ln 32 Ln x3= Ln 32 - Ln 4 = Ln (32/4) = Ln 8= Ln 2
18
ln(ln)
Take the natural logarithm (ln) of both sides of the equation to cancel the exponent (e). For example, ify=Aexlog transform both sides and apply the rules of logarithms:ln(y)=ln(Aex)ln(y)=ln(A)+ln(ex)ln(y)=ln(A)+xrearrange in terms of x:x=ln(y)-ln(A), or more simplyx=ln(y/A)
Use the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln x
You can also write this as ln(6 times 4)
2 ln(9) + 2 ln(5) = 2 ln(x) - 3ln(81) + ln(25) = ln(x2) - 37.61332 = ln(x2) - 3ln(x2) = 10.61332ln(x) = 5.30666x = e5.30666 = 201.676 (rounded)
3 ln(x) = ln(3x)ln(x3) = ln(3x)x3 = 3xx2 = 3x = sqrt(3)x = 1.732 (rounded)
It depends. If you mean (ln e)7, then the answer is 1, since (ln e) = 1. If you mean ln(e7), then the answer is 7, since ln(e7) = 7 (ln e) and (ln e) = 1.
Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.
The correct formula for exponential interpolation is: y =ya*(yb/ya)^[(x-xa)/(xb-xa)], xa<x<xb and also, x=xa*[ln(yb)-ln(y)]/[ln(yb)-ln(ya)]+xb*[ln(y)-ln(ya)]/[ln(yb)-ln(ya)], ya<y<yb
I assume the question is NOT about ln(a*b) = ln(a) + ln(b) because that is true for all positive real a and b. Instead, you want a solution to ln(a) * b = ln(a) + ln(b) or, ln(a) * (b-1) = ln(b) ln(a) = ln(b)/(b-1) ln(a) = ln[b1/(b-1)] Exponentiating, a = b1/(b-1) For any real number b > 1, a given by the above equation will meet your requirements.