(2)1/21 = 1.03356 (rounded)
That's an annual interest of 3.356 percent.
Let's try it:
(1.03356)21 = 2.00009 on my calculator, which is pretty close.
If you start with an investment of I and the interest rate is r% per annum (compounded), then you want a solution to2I = I(1 + r/100)24or I = (1 + r/100)24That is ln(2) = 24*ln(1 + r/100)so that ln(1 + r/100) = ln(2)/24 = 0.02888or (1 + r/100) = exp(0.02888) = 1.0293and so r/100 = 0.0293 so that r = 2.93%If you start with an investment of I and the interest rate is r% per annum (compounded), then you want a solution to2I = I(1 + r/100)24or I = (1 + r/100)24That is ln(2) = 24*ln(1 + r/100)so that ln(1 + r/100) = ln(2)/24 = 0.02888or (1 + r/100) = exp(0.02888) = 1.0293and so r/100 = 0.0293 so that r = 2.93%If you start with an investment of I and the interest rate is r% per annum (compounded), then you want a solution to2I = I(1 + r/100)24or I = (1 + r/100)24That is ln(2) = 24*ln(1 + r/100)so that ln(1 + r/100) = ln(2)/24 = 0.02888or (1 + r/100) = exp(0.02888) = 1.0293and so r/100 = 0.0293 so that r = 2.93%If you start with an investment of I and the interest rate is r% per annum (compounded), then you want a solution to2I = I(1 + r/100)24or I = (1 + r/100)24That is ln(2) = 24*ln(1 + r/100)so that ln(1 + r/100) = ln(2)/24 = 0.02888or (1 + r/100) = exp(0.02888) = 1.0293and so r/100 = 0.0293 so that r = 2.93%
The formula to calculate the present amount including compound interest is, A = P(1 + r/n)nt , where P is the principal amount, r is the annual rate expressed as a decimal , t is the number of years, and n is number of times per year that interest is compounded. 9500 = 7000(1 + r/12)^(12 x 3) = 7000(1 + r/12)^36 Then, (1 + r/12)^36 = 9500 / 7000 = 1.3571429 approx (1 + r/12) = 36√1.3571429 ≅ 1.0085189 r/12 = 0.0085189 r = 12 x 0.0085189 ≅ 0.1022268 Then the required interest rate is 10.223% (3dp)
A well-structured problem has all the required information to solve it.
A well-structured problem has all the required information to solve it.
Equalizing connections are required when parallelingtwo compound generators and paralleling two Series generator .
Approx 44.225 % The exact value is 100*[3^(1/3) - 1] %
It is approx 8.66%
390.45
(1+x)10 = 310 log(1+x) = log(3)log(1+x) = 0.1 log(3)(1+x) = 10[0.1 log(3)] = 1.116123x = .116123 = 11.61 percent
We still need to know how often the interest is compounded ... Weekly ? Daily ? Hourly ? What does "continuous" mean ?
A good jumbo CD rate would be over 5% and one must be careful to find out how often the interest will be compounded. Also important is the minimum investment amount that would be required.
3.73% would do it almost exactly: Where p is the original investment and i is the rate of interest: 3p = p((1 + i/100) to the power of 30) dividing by p gives ((1 + i/100) to the power 30) = 3 using logarithms (log 3)/30 = 1 + i/100 antilog (0.47712/30) = 1 + i/100 antilog 0.0159 = 1 + i/100 1.037299 = 1 + i/100 0.037299 = i/100 i = 3.7299 Later: I tested this on Excel with capital of 5000 and interest rate of 3.73% and after 30 years investment was worth 15000.35!
Future Value = (Present Value)*(1 + i)^n {i is interest rate per compounding period, and n is the number of compounding periods} Memorize this.So if you want to double, then (Future Value)/(Present Value) = 2, and n = 16.2 = (1 + i)^16 --> 2^(1/16) = 1 + i --> i = 2^(1/16) - 1 = 0.044274 = 4.4274 %
The Rule of 72 states that you can estimate the number of years required to double an investment by dividing 72 by the annual interest rate. In this case, with an 8% interest rate, you would calculate 72 ÷ 8 = 9 years. Therefore, it will take approximately 9 years for Bill's $750 to double in a CD with 8% interest compounded quarterly.
If it is compounded annually, then: F = P*(1 + i)^t {F is final value, P is present value, and i is interest rate, t is time}.So if it triples, F/P = 3, and 12 years: t = 12, so we have 3 = (1 + i)^12, solve for i using logarithms (any base log will do, but I'll use base 10):log(3) = log((1+i)^12) = 12*log(1+i)(log(3))/12 = log(1+i).Now take 10 raised to both sides: 10^((log(3))/12) = 10^log(1+i) = 1 + ii = 10^((log(3))/12) - 1 = 0.095873So a rate of 9.5873 % (compounded annually) will triple the investment in 12 years.
the equation for compound interest is Pe^(rt) the principal you want in the end is twice that of the original 12,000 plugging in and solving you get 12,000=6000e^(.13t) t = 5.33 years
required rate of return is the 'interest' that investors expect from an investment project. coupon rate is the interest that investors receive periodically as a reward from investing in a bond