answersLogoWhite

0

When graphing a system of equations with infinitely many solutions, the two lines will be identical, meaning they overlap completely. As a result, they will share the same Y-intercept, which will be the point where both lines intersect the Y-axis. Therefore, the Y-intercept will be the same for both equations. This indicates that every point on the line is a solution to the system.

User Avatar

AnswerBot

4mo ago

What else can I help you with?

Related Questions

When graphing a system of equations with infinitely many solutions the slopes of the two lines will be?

When graphing a system of equations with infinitely many solutions, the slopes of the two lines will be equal, as they represent the same line. Additionally, the lines will coincide, meaning every point on one line is also a point on the other. This occurs when both equations are essentially the same, differing only by a constant factor.


When is slope-intercept form useful?

its useful in graphing! equations, inequalities, ect pretty much graphing!


What does b m stand for?

It means the Y and X intercept for a graphing equations if that's what your asking


When solving a system of equations by graphing you will need to graph the equations on the same?

When solving a system of equations by graphing, you will need to graph the equations on the same coordinate plane. This allows you to visually identify the point where the two lines intersect, which represents the solution to the system. If the lines intersect at a single point, that point is the unique solution; if the lines are parallel, there is no solution; and if they coincide, there are infinitely many solutions.


When graphing a system of equations what is the point of intersection called?

The points of intersection are normally the solutions of the equations for x and y


What are the different ways of graphing linear equations in two variables?

slope intercept form, rise over run


What is a set of two or more equations that contain two or more variables?

A set of two or more equations that contain two or more variables is known as a system of equations. These equations can be linear or nonlinear and are solved simultaneously to find the values of the variables that satisfy all equations in the system. Solutions can be found using various methods, such as substitution, elimination, or graphing. If the system has a unique solution, it means the equations intersect at a single point; if there are no solutions or infinitely many solutions, the equations may be parallel or coincide, respectively.


Graphing linear equation using the slope and y-intercept of the line?

The y-intercept, together with the slope of the line, can also be used in graphing linear equations. The slope and y-intercept of a line can be obtained easily by inspection if the equeation of the line is of the form y=mx+b where m is the slope and b is the y-intercept.


What are the answers to objective 6a solve systems of equations by graphing?

To solve systems of equations by graphing, you plot each equation on the same coordinate plane and identify the point(s) where the lines intersect. The intersection point(s) represent the solution(s) to the system, indicating the values of the variables that satisfy both equations. If the lines intersect at one point, there is a unique solution; if they are parallel, there is no solution; and if they coincide, there are infinitely many solutions.


How many solutions are there to the systems of equations?

I'm not 100% certain about what you're asking, but each function and relation can have different solutions, either one of the three ways. (Always dealing with two equations) This is based off my Grade 10 Knowledge One (Intersecting at one specific point) None (Parallel Lines) Coincident two lines with the same slope and intercept) Refer back to : " y=mx+b " equation if needed. If you are talking about the possible ways to find the solution (x,y), there are also three. Elimination, (Removing one variable to solve the equation) Substitution, (Knowing what x or y, and inputting in the second equation) Graphing, (By drawing both equations, This method is not very accurate)


Who has the graphing linear equations quilt project answers?

I'm sorry, but I cannot provide answers to specific homework or assignment questions. However, I can help explain the concept of graphing linear equations and how to approach such projects. Linear equations can be graphed using the slope-intercept form (y = mx + b), where "m" represents the slope and "b" represents the y-intercept. To create a quilt project based on graphing linear equations, you can design patterns using different slopes and intercepts to visually represent the equations on a grid or fabric. This project can be a fun and creative way to understand the relationship between equations and their graphical representations.


How do you find solutions of equations?

To find solutions of equations, you can use various methods depending on the type of equation. For linear equations, you can isolate the variable by performing algebraic operations. For polynomial equations, techniques like factoring, using the quadratic formula, or graphing may be employed. For more complex equations, numerical methods or software tools can be helpful in approximating solutions.