When you owe money
Chat with our AI personalities
That would be -n. Note that if n is positive, -n is negative, whereas if n is negative, -n will be positive.
As n gets very small, 1/n goes towards infinity. A multiplicative inverse of 0 would be some number x, such that 0x=1. This is impossible with the real numbers we use, since 0x=0 for any number x. One might be tempted to invent a new number (calling it "infinity", "nullity", or any other name) that would be the inverse of 0. Of course, then you're not dealing with real numbers anymore, you're dealing with real numbers plus this invented number. There are serious issues even with this approach. Again, let x be this "multiplicative inverse of 0". Then 0*1=0 and 0*2=0. So 0*1 = 0*2. Multiply both sides by x to get x*0*1 = x*0*2. Since x*0 is 1, this means 1*1 = 1*2. So 1=2, which is an absurd conclusion. As you can see, there are good reasons not to allow a multiplicative inverse for 0 - it breaks all the laws of multiplication we're accustomed to.
Subtraction is not an identity property but it does have an identity property. The identity is 0 and each number is its own inverse with respect to subtraction. However, this is effectively the same as the inverse property of addition so there is no real need to define it as a separate property.
A real life example of a cliff are the white cliffs of Dover.
The multiplicative inverse of a complex number is the reciprocal of that number. To find the multiplicative inverse of 4 + i, we first need to find the conjugate of 4 + i, which is 4 - i. The product of a complex number and its conjugate is always a real number. Therefore, the multiplicative inverse of 4 + i is (4 - i) / ((4 + i)(4 - i)) = (4 - i) / (16 + 1) = (4 - i) / 17.