There cannot be such a polynomial.
If a polynomial has rational coefficients, then any complex roots must come in conjugate pairs. In this case the conjugate for 2-3i is not a root. Consequently, either
(a) the function is not a polynomial, or
(b) it does not have rational coefficients, or
(c) 2 - 3i is not a root (nor any other complex number), or
(d) there are other roots that have not been mentioned.
In the last case, the polynomial could have any number of additional (unlisted) roots and is therefore indeterminate.
Chat with our AI personalities
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is : where a≠ 0. (For if a = 0, the equation becomes a linear equation.) The letters a, b, and c are called coefficients: the quadratic coefficient a is the coefficient of x2, the linear coefficient b is the coefficient of x, and c is the constant coefficient, also called the free term or constant term. Quadratic equations are called quadratic because quadratus is Latin for "square"; in the leading term the variable is squared. A quadratic equation with real or complex coefficients has two (not necessarily distinct) solutions, called roots, which may or may not be real, given by the quadratic formula: : where the symbol "±" indicates that both : and are solutions.
N i g g e r s
If a polynomial function, written in descending order, has integer coefficients, then any rational zero must be of the form ± p/q, where p is a factor of the constant term and q is a factor of the leading coefficient.
TRue
It is the number (coefficient) that belongs to the variable of the highest degree in a polynomial.
Anywhere. Provided it is not zero, and number p can be the leading coefficient of a polynomial. And any number q can be the constant term.
To find all rational roots of a polynomial equation, you can use the Rational Root Theorem. This theorem states that any rational root of a polynomial equation in the form of (anxn an-1xn-1 ... a1x a0 0) must be a factor of the constant term (a0) divided by a factor of the leading coefficient (an). By testing these possible rational roots using synthetic division or polynomial long division, you can determine which ones are actual roots of the equation.
It is the Coefficient. It only refers to the given term that it is front. e.g. 2x^2 - 3x + 1 The '2' in front of 'x^2' only refers to 'x^2'. The '-3' in front of 'x' is the coefficient of '-3' The '1' is a constant.
Leading coefficient: Negative. Order: Any even integer.
To determine whether a polynomial equation has imaginary solutions, you must first identify what type of equation it is. If it is a quadratic equation, you can use the quadratic formula to solve for the solutions. If the equation is a cubic or higher order polynomial, you can use the Rational Root Theorem to determine if there are any imaginary solutions. The Rational Root Theorem states that if a polynomial equation has rational solutions, they must be a factor of the constant term divided by a factor of the leading coefficient. If there are no rational solutions, then the equation has imaginary solutions. To use the Rational Root Theorem, first list out all the possible rational solutions. Then, plug each possible rational solution into the equation and see if it is a solution. If there are any solutions, then the equation has imaginary solutions. If not, then there are no imaginary solutions.
In mathematics, a quadratic equation is a polynomial equation of the second degree. The general form is : where a≠ 0. (For if a = 0, the equation becomes a linear equation.) The letters a, b, and c are called coefficients: the quadratic coefficient a is the coefficient of x2, the linear coefficient b is the coefficient of x, and c is the constant coefficient, also called the free term or constant term. Quadratic equations are called quadratic because quadratus is Latin for "square"; in the leading term the variable is squared. A quadratic equation with real or complex coefficients has two (not necessarily distinct) solutions, called roots, which may or may not be real, given by the quadratic formula: : where the symbol "±" indicates that both : and are solutions.
N i g g e r s
t^5 +9t^4 -5t +6; 1
what is the leading coefficient -3x+8