answersLogoWhite

0

To find all rational roots of a polynomial equation, you can use the Rational Root Theorem. This theorem states that any rational root of a polynomial equation in the form of (anxn an-1xn-1 ... a1x a0 0) must be a factor of the constant term (a0) divided by a factor of the leading coefficient (an). By testing these possible rational roots using synthetic division or polynomial long division, you can determine which ones are actual roots of the equation.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Computer Science

How can MATLAB be used to find the roots of a given equation?

MATLAB can be used to find the roots of a given equation by using the built-in functions like "roots" or "fzero". These functions can solve equations numerically and provide the values of the roots. By inputting the equation into MATLAB and using these functions, the roots can be easily calculated and displayed.


How do you find the roots of an equation?

for an 2nd order the roots are : [-b+-sqrt(b^2-4ac)]/2a


How to find the roots of a function in MATLAB?

To find the roots of a function in MATLAB, you can use the "roots" function for polynomials or the "fzero" function for general functions. The "roots" function calculates the roots of a polynomial, while the "fzero" function finds the root of a general function by iteratively narrowing down the root within a specified interval.


Is the Ford-Fulkerson algorithm guaranteed to find the maximum flow in polynomial time?

No, the Ford-Fulkerson algorithm is not guaranteed to find the maximum flow in polynomial time.


What makes a problem pspace-hard and how does it impact the complexity of solving it?

A problem is considered PSPACE-hard if it is at least as hard as the hardest problems in PSPACE, a complexity class of problems that can be solved using polynomial space on a deterministic Turing machine. This means that solving a PSPACE-hard problem requires a significant amount of memory and computational resources. The impact of a problem being PSPACE-hard is that it indicates the problem is very difficult to solve efficiently, and may require exponential time and space complexity to find a solution.

Related Questions

What are roots of the polynomial function F(x)x3-x2-5x-3?

To find the roots of the polynomial function ( F(x) = x^3 - x^2 - 5x - 3 ), you can use methods such as factoring, synthetic division, or the Rational Root Theorem. By testing possible rational roots, you may find that ( x = -1 ) is a root. Performing synthetic division or polynomial long division will allow you to factor the polynomial further, leading to the other roots. The remaining roots can be found using numerical methods or by solving the resulting quadratic equation.


Can you find a third degree polynomial equation with rational coefficients that has the given numbers as roots 3i and 7?

Yes, easily. Even though the question did not ask what the polynomial was, only if I could find it, here is how you would find the polynomial: Since the coefficients are rational, the complex (or imaginary) roots must form a conjugate pair. That is to say, the two complex roots are + 3i and -3i. The third root is 7. So the polynomial, in factorised form, is (x - 3i)(x + 3i)(x - 7) = (x2 + 9)(x - 7) = x3 - 7x2 + 9x - 63


How you can solve polynomial degree 3 equatiion?

To solve a polynomial equation of degree 3 (cubic equation), you can use several methods, including factoring, the Rational Root Theorem, or synthetic division if rational roots are suspected. Alternatively, you can apply Cardano's formula, which provides a systematic way to find the roots of cubic equations. Numerical methods, such as Newton's method, can also be used for approximating roots when exact solutions are challenging to find. Lastly, graphing the function may help identify the roots visually.


what are all of the zeros of this polynomial function f(a)=a^4-81?

Find All Possible Roots/Zeros Using the Rational Roots Test f(x)=x^4-81 ... If a polynomial function has integer coefficients, then every rational zero will ...


What are the roots of the polynomial x2 plus 3x plus 5?

You can find the roots with the quadratic equation (a = 1, b = 3, c = -5).


What 2 values of x are roots of the polynomial x2 plus 3x-5?

You can find the roots with the quadratic equation (a = 1, b = 3, c = -5).


Can the rational zero test be used to find irrational roots as well as rational roots?

Rational zero test cannot be used to find irrational roots as well as rational roots.


How do you foil a quartic?

A quartic equation can be factored by grouping or using a substitution method. You can also use the rational root theorem to find potential rational roots and factorize the quartic equation accordingly. Alternatively, you can use numerical methods or technology to approximate the roots.


Does there exist a quadratic equation whose coefficients are all distinct irrationals but both the roots are rationals?

Yes, it is possible for a quadratic equation to have distinct irrational coefficients while having rational roots. For example, consider the quadratic equation (x^2 - \sqrt{2}x - \sqrt{3} = 0). The coefficients (-\sqrt{2}) and (-\sqrt{3}) are distinct irrationals, yet the roots of this equation can be rational. Specifically, if we apply the quadratic formula, we can find rational roots depending on the specific values of the coefficients.


Is it possible to find the discriminant of a binomial?

A polynomial discriminant is defined in terms of the difference in the roots of the polynomial equation. Since a binomial has only one root, there is nothing to take its difference from and so in such a situation, the discriminant is a meaningless concept.


The polynomial given roots?

Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.


You can also use of a polynomial to help you find its factors and roots?

graph!