A matrix A is orthogonal if itstranspose is equal to it inverse. So AT is the transpose of A and A-1 is the inverse. We have AT=A-1 So we have : AAT= I, the identity matrix Since it is MUCH easier to find a transpose than an inverse, these matrices are easy to compute with. Furthermore, rotation matrices are orthogonal. The inverse of an orthogonal matrix is also orthogonal which can be easily proved directly from the definition.
a square matrix that is equal to its transpose
The transpose of a matrix A is the matrix B that is obtained by swapping the rows and columns of A into the columns and rows of B. In algebraic form, if A = {aij} then B = {aji} is its transpose, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The classical adjoint of a square matrix A the transpose of the matrix who (i, j) entry is the a i j cofactor.
Since the columns of AT equal the rows of A by definition, they also span the same space, so yes, they are equivalent.
A matrix A is orthogonal if itstranspose is equal to it inverse. So AT is the transpose of A and A-1 is the inverse. We have AT=A-1 So we have : AAT= I, the identity matrix Since it is MUCH easier to find a transpose than an inverse, these matrices are easy to compute with. Furthermore, rotation matrices are orthogonal. The inverse of an orthogonal matrix is also orthogonal which can be easily proved directly from the definition.
the transpose of null space of A is equal to orthogonal complement of A
yes, it is true that the transpose of the transpose of a matrix is the original matrix
First let's be clear on the definitions.A matrix M is orthogonal if MT=M-1Or multiply both sides by M and you have1) M MT=Ior2) MTM=IWhere I is the identity matrix.So our definition tells us a matrix is orthogonal if its transpose equals its inverse or if the product ( left or right) of the the matrix and its transpose is the identity.Now we want to show why the inverse of an orthogonal matrix is also orthogonal.Let A be orthogonal. We are assuming it is square since it has an inverse.Now we want to show that A-1 is orthogonal.We need to show that the inverse is equal to the transpose.Since A is orthogonal, A=ATLet's multiply both sides by A-1A-1 A= A-1 ATOr A-1 AT =ICompare this to the definition above in 1) (M MT=I)do you see how A-1 now fits the definition of orthogonal?Or course we could have multiplied on the left and then we would have arrived at 2) above.
The Transpose of a MatrixThe matrix of order n x m obtained by interchanging the rows and columns of the m X n matrix, A, is called the transpose of A and is denoted by A' or AT.
a square matrix that is equal to its transpose
Another sparse matrix.
Invert rows and columns to get the transpose of a matrix
The transpose of a matrix A is the matrix B that is obtained by swapping the rows and columns of A into the columns and rows of B. In algebraic form, if A = {aij} then B = {aji} is its transpose, where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The classical adjoint of a square matrix A the transpose of the matrix who (i, j) entry is the a i j cofactor.
For the matrix , verify that
Hermitian matrix (please note spelling): a square matrix with complex elements that is equal to its conjugate transpose.