true.
Afetr you take the first derivative you take it again Example y = x^2 dy/dx = 2x ( first derivative) d2y/dx2 = 2 ( second derivative)
A fourth degree polynomial.
The highest order of derivative is 2. There will be a second derivative {f''(x) or d2y/dx} in the equation.
If the first derivative of a function is greater than 0 on an interval, then the function is increasing on that interval. If the first derivative of a function is less than 0 on an interval, then the function is decreasing on that interval. If the second derivative of a function is greater than 0 on an interval, then the function is concave up on that interval. If the second derivative of a function is less than 0 on an interval, then the function is concave down on that interval.
it tells you if it is a min or max
she thought she would get points of infliction!
No. The important decider is the second derivative of the polynomial (the gradient of the gradient of the polynomial) at the zero of the first derivative: If less than zero, then the point is a maximum If more than zero, then the point in a minimum If equal to zero, then the point is a point of inflection. Consider the polynomial f(x) = x3, then f'(x) = 3x2 f'(0) = 0 -> x = 0 could be a maximum, minimum or point of inflection. f''(x) = 6x f''(0) = 0 -> x = 0 is a point of inflection Points of inflection do not necessarily have a zero gradient, unlike maxima and minima which must. Points of inflection are the zeros of the second derivative of the polynomial.
Basically the same way you graph most functions. You can calculate pairs of value - you express the polynomial as y = p(x), that is, the y-values are calculated on the basis of the x-values, you assign different values for "x", and calculate the corresponding values for "y". Then graph them. You can get more information about a polynomial if you know calculus. Calculus books sometimes have a chapter on graphing equations. For example: if you calculate the derivative of a polynomial and then calculate when this derivate is equal to zero, you will find the points at which the polynomial may have maximum or minimum values, and if you calculate the derivative at any point, you'll see whether the polynomial increases or decreases at that point (from left to right), depending on whether the derivative is positive or negative. Also, if you calculate when the second derivative is equal to zero, you'll find points at which the polynomial may change from convex to concave or vice-versa.
Basically the same way you graph most functions. You can calculate pairs of value - you express the polynomial as y = p(x), that is, the y-values are calculated on the basis of the x-values, you assign different values for "x", and calculate the corresponding values for "y". Then graph them. You can get more information about a polynomial if you know calculus. Calculus books sometimes have a chapter on graphing equations. For example: if you calculate the derivative of a polynomial and then calculate when this derivate is equal to zero, you will find the points at which the polynomial may have maximum or minimum values, and if you calculate the derivative at any point, you'll see whether the polynomial increases or decreases at that point (from left to right), depending on whether the derivative is positive or negative. Also, if you calculate when the second derivative is equal to zero, you'll find points at which the polynomial may change from convex to concave or vice-versa.
Well, "non-polynomial" can be just about anything; presumably you mean a non-polynomial FUNCTION, but there are lots of different types of functions. Polynomials, among other things, have the following properties - assuming you have an expression of the type y = P(x):* The polynomial is defined for any value of "x". * The polynomial makes is continuous; i.e., it doesn't make sudden "jumps". * Similarly, the first derivative, the second derivative, etc., are continuous. A non-polynomial function may not have all of these properties; for example: * A rational function is not defined at any point where the denominator is zero. * The square root function is not defined for negative values. * The first derivative (i.e., the slope) of the absolute value function makes a sudden jump at x = 0. * The function that takes the integer part of any real number makes sudden jumps at all integers.
No. Consider the polynomial: f(x) = x3 + 4x2 + 4x + 16 then f'(x) = 3x2 + 8x + 4 = (3x + 2)(x + 2) => x = -2/3, -2 are the zeros of f'(x) Using the second derivative: f''(x) = 6x + 8 it can be seen that: f''(-2) = -4 -> x = -2 is a maximum f''(-2/3) = +4 -> x = -2/3 is a minimum But plugging back into the original polynomial: f(-2) = 16 f(-2/3) = 14 22/27 Between the zeros of the first derivative, the slope of the polynomial is negative so that the polynomial is always decreasing in value, but as the polynomial is greater than zero at the zeros of the first derivative, it cannot become zero between them. That is it has no zeros between the zeros of its first derivative f(x) = x3 + 4x2 + 4x + 16 = (x + 4)(x2 + 4) has only 1 zero at x = -4.
Yes.
Yes.
Derivatives for displacement refer to the rate of change of an object's position with respect to time. It can be calculated by finding the first derivative of the position function. The first derivative of displacement gives the object's velocity, while the second derivative gives the acceleration.
The Geometrical meaning of the second derivative is the curvature of the function. If the function has zero second derivative it is straight or flat.
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2